首页> 外国专利> SYSTEM AND METHOD FOR NEURAL NETWORK BASED DETECTION OF CYBER INTRUSION VIA MODE-SPECIFIC SYSTEM TEMPLATES

SYSTEM AND METHOD FOR NEURAL NETWORK BASED DETECTION OF CYBER INTRUSION VIA MODE-SPECIFIC SYSTEM TEMPLATES

机译:基于神经网络的基于模式的网络入侵检测系统及方法

摘要

A system and method for detecting and preventing cyberintrusion of a protected system incorporates neural networks having a training mode and a host-accessible (e.g., non-training) mode. When in training mode, the neural networks observe data exchanges with a protected system via interfaces (based on test inputs) and generate system templates corresponding to observed normal behaviors of the interfaces (including “gold standard” behavior indicative of optimal performance behaviors and/or minimal threat of cyberintrusion). When in host-accessible mode, the neural networks observe operating behaviors of the interfaces for each exchange via the interfaces and apply stored system templates to the system data to most closely approximate the optimal behavior set. If the divergence between the best-fit system template and the applied best-fit system template is sufficient to indicate anomalous behavior and a potential risk of cyberintrusion or cyberattack, an event monitor takes corrective action to prevent a cyberintrusion.
机译:用于检测和防止受保护系统的网络入侵的系统和方法包括具有训练模式和主机可访问(例如,非训练)模式的神经网络。在训练模式下,神经网络通过接口(基于测试输入)观察与受保护系统的数据交换,并生成与观察到的接口正常行为相对应的系统模板(包括指示最佳性能行为和/或最小网络入侵威胁的“黄金标准”行为)。当处于主机可访问模式时,神经网络通过接口观察每个交换的接口的操作行为,并将存储的系统模板应用于系统数据,以最接近最佳行为集。如果最佳拟合系统模板与应用的最佳拟合系统模板之间的差异足以指示异常行为以及网络入侵或网络攻击的潜在风险,则事件监视器将采取纠正措施来防止网络入侵。

著录项

  • 公开/公告号US20230068909A1;US2023000068909A1;US2023068909A1;US2023068909

    专利类型

  • 公开/公告日2023-03-02

    原文格式PDF

  • 申请/专利权人 ROCKWELL COLLINS INC.;

    申请/专利号US17464159;US202100017464159;US202117464159A;US202117464159

  • 发明设计人

    申请日2021-09-01

  • 分类号G06F21/55;

  • 国家

  • 入库时间 2024-06-14 23:52:13

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号