首页> 外国专利> DETECTING MONEY LAUNDERING ACTIVITIES USING DRIFT IN A TRAINED SIAMESE NEURAL NETWORK

DETECTING MONEY LAUNDERING ACTIVITIES USING DRIFT IN A TRAINED SIAMESE NEURAL NETWORK

机译:在经过训练的暹罗神经网络中使用漂移检测洗钱活动

摘要

Siamese neural networks (SNN) are configured to detect differences between financial transactions for multiple financial institutions and transactions for a target party. A first neural network of the SNN tracks transactions (target transactions) for a particular customer or financial institution over time and provides a target output vector. Similarly, a second neural network of the SNN tracks transactions (baseline transactions) for all or a plurality of financial institutions (e.g., within a region) over the same period of time and provides a baseline output vector. The transactions for all or a plurality of financial institutions act as a baseline of transactions against which potentially fraudulent or money laundering activity may be compared. Because Siamese neural networks account for temporal changes based on the baseline of transactions, sudden changes in target transactions will only trigger an alarm if such changes (e.g., deviations or drifts) are relative to a baseline of transactions.
机译:暹罗神经网络 (SNN) 配置为检测多个金融机构的金融交易与目标方的交易之间的差异。SNN的第一神经网络跟踪特定客户或金融机构的交易(目标交易)随时间推移,并提供目标输出向量。类似地,SNN的第二个神经网络跟踪同一时间段内所有或多个金融机构(例如,在一个区域内)的交易(基线交易),并提供基线输出向量。所有或多个金融机构的交易作为交易的基准,可以与潜在的欺诈或洗钱活动进行比较。由于 Siamese 神经网络根据交易基线考虑时间变化,因此目标交易的突然变化只有在此类变化(例如偏差或漂移)相对于交易基线时才会触发警报。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号