首页> 外国专利> Classifying images in overlapping groups of images using convolutional neural networks

Classifying images in overlapping groups of images using convolutional neural networks

机译:使用卷积神经网络对重叠图像组中的图像进行分类

摘要

The present disclosure relates to training a machine learning model to classify images. An example method generally includes receiving a training data set including images in a first category and images in a second category. A convolutional neural network (CNN) is trained using the training data set, and a feature map is generated from layers of the CNN based on features of images in the training data set. A first area in the feature map including images in the first category and a second area in the feature map where images in the first category overlap with images in the second category are identified. The first category is split into a first subcategory corresponding to the first area and a second subcategory corresponding to the second area. The CNN is retrained based on the images in the first subcategory, images in the second subcategory, and images in the second category.
机译:本发明涉及训练机器学习模型以对图像进行分类。示例方法通常包括接收训练数据集,该训练数据集包括第一类别中的图像和第二类别中的图像。使用训练数据集训练卷积神经网络(CNN),并根据训练数据集中的图像特征从CNN层生成特征图。特征图中包括第一类图像的第一区域和特征图中识别第一类图像与第二类图像重叠的第二区域。第一类别被划分为对应于第一区域的第一子类别和对应于第二区域的第二子类别。根据第一个子类别中的图像、第二个子类别中的图像和第二类别中的图像重新训练CNN。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号