首页> 外国专利> NEAR REAL-TIME DETECTION AND CLASSIFICATION OF MACHINE ANOMALIES USING MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE

NEAR REAL-TIME DETECTION AND CLASSIFICATION OF MACHINE ANOMALIES USING MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE

机译:使用机器学习和人工智能近实时检测和机器异常分类

摘要

A method of determining anomalous operation of a system includes: capturing a stream of data representing sensed (or determined) operating parameters of the system over a range of operating states, with a stability indicator representing whether the system was operating in a stable state when the operating parameters were sensed; determining statistical properties of the stream of data, including an amplitude-dependent parameter and a variance thereof over time parameter for an operating regime representing stable operation; determining a statistical norm for the statistical properties that distinguish between normal operation and anomalous operation of the system; responsive to detecting that normal and anomalous operation of the system can no longer be reliably distinguished, determining new statistical properties to distinguish between normal and anomalous system operation; and outputting a signal based on whether a concurrent stream of data representing sensed operating parameters of the system represent anomalous operation of the system.
机译:确定系统的异常操作的方法包括:在一系列操作状态下捕获表示系统的感测的(或确定的)操作参数的数据流,其中稳定指示器表示系统是否以稳定状态运行感测了操作参数;确定数据流的统计特性,包括幅度依赖参数以及表示表示稳定操作的操作状态的时间参数的差异;确定区分系统正常操作和异常操作的统计特性的统计标准;响应于检测到系统的正常和异常操作不能再可靠地区分,确定新的统计特性以区分正常和异常的系统操作;并基于表示系统的感测的操作参数的并发数据是否表示系统的同时流代表系统的异常操作。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号