首页> 外国专利> DOMAIN GENERALIZATION VIA BATCH NORMALIZATION STATISTICS

DOMAIN GENERALIZATION VIA BATCH NORMALIZATION STATISTICS

机译:通过批量归一化统计信息域泛化

摘要

Generally, the present disclosure is directed to systems and methods that leverage batch normalization statistics as a way to generalize across domains. In particular, example implementations of the present disclosure can generate different representations for different domains by collecting independent batch normalization statistics, which can then be used to map between domains in a shared latent space. At test or inference time, samples from an unknown test or target domain can be projected into the same shared latent space. The domain of the target sample can therefore be expressed as a linear combination of the known ones, with the combination between weighted based on respective distances between batch normalization statistics in the latent space. This same mapping strategy can be applied at both training and test time to learn both a latent representation and a powerful but lightweight ensemble model that operates within such latent space.
机译:通常,本公开涉及利用批量归一化统计信息作为跨域拓展的方式的系统和方法。 特别地,本公开的示例实现可以通过收集独立的批量归一化统计数据来生成不同域的不同表示,然后可以用于在共享潜空间中的域之间映射。 在测试或推理时间时,可以将来自未知测试或目标域的示例投影到相同的共享潜空间中。 因此,目标样本的域可以表示为已知的域的线性组合,基于在潜在空间中的批量归一化统计数据之间的相应距离之间的加权之间的组合。 可以在培训和测试时间应用相同的映射策略来学习潜在的表示和强大但轻量级的整体模型,该模型在这种潜在空间内运行。

著录项

  • 公开/公告号WO2021178747A1

    专利类型

  • 公开/公告日2021-09-10

    原文格式PDF

  • 申请/专利权人 GOOGLE LLC;

    申请/专利号WO2021US21002

  • 申请日2021-03-05

  • 分类号G06N3/04;G06N3/08;

  • 国家 US

  • 入库时间 2024-06-14 22:03:13

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号