首页> 外国专利> BIAS DETECTION AND EXPLAINABILITY OF DEEP LEARNING MODELS

BIAS DETECTION AND EXPLAINABILITY OF DEEP LEARNING MODELS

机译:深度学习模型的偏见检测和解释性

摘要

System and method for latent bias detection by artificial intelligence modeling of human decision making using time series prediction data and events data of survey participants along with personal characteristics data for the participants. A deep Bayesian model solves for a bias distribution that fits a modeled prediction distribution of time series event data and personal characteristics data to a prediction probability distribution derived by a recurrent neural network. Sets of group bias clusters are evaluated for key features of related personal characteristics. Causal graphs are defined from dependency graphs of the key features. Bias explainability is inferred by perturbation in the deep Bayesian model of a subset of features from the causal graph, determining which causal relationships are most sensitive to alter group membership of participants.
机译:利用时间序列预测数据和调查参与者的事件数据以及参与者的个人特征数据,通过人工智能建模的潜在智能建模的系统和方法。深度贝叶斯模型解决了将时间序列事件数据和个人特征数据的建模预测分布拟合到由经常性神经网络导出的预测概率分布的偏置分布。对相关个人特征的关键特征评估了组偏置群集合。因果图是由关键特征的依赖图定义的。偏见可解释性通过来自因果图的特征子集的深贝叶斯模型的扰动推断出来,确定哪些因果关系对参与者的组成员资格最敏感。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号