Systems and methods for sensing angular motion using a microelectromechanical system (MEMS) gyroscope are described. These systems and methods may be useful for sensing angular motion in the presence of low-frequency noise, which may be noise below 1 KHz. In a system for sensing angular motion, low-frequency noise may give rise to duty cycle jitter, which may affect the demodulation of the sense signal and cause errors in angular motion estimates. The systems and methods described herein address this problem by relying on double-edge phase detection technique that involves sensing when the rising and falling edges of the resonator signal deviate from their expected values in the idealized 50% duty cycle scenario. To prevent the formation of ripples in the double-edge phase detection that may otherwise affect the demodulation of the sense signal, a switch may be used. The switch may be maintained in a non-conductive state when a ripple is received.
展开▼