首页> 外国专利> Asymmetric quantization of multiple-and-accumulate operations in deep learning processing

Asymmetric quantization of multiple-and-accumulate operations in deep learning processing

机译:深度学习处理中多累积操作的不对称量化

摘要

A processing unit performs multiply-and-accumulate (MAC) operations on asymmetrically quantized data. The processing unit includes a MAC hardware unit to perform the MAC operations on a first data sequence and a second data sequence to generate an asymmetric MAC output. Both the first data sequence and the second data sequence are asymmetrically quantized. The processing unit further includes an accumulator hardware unit to accumulate the first data sequence concurrently with the MAC operations to generate an accumulated output. The processing unit further includes a multiply-and-add (MAD) hardware unit to multiply the accumulated output with a second offset to generate a multiplication output, and to add the multiplication output, the asymmetric MAC output and a pre-computed value calculated before runtime to generate a final output. The second offset indicates an amount of asymmetry of the second data sequence with respect to zero.
机译:处理单元对非对称量化数据执行乘法和累积(MAC)操作。处理单元包括MAC硬件单元,用于对第一数据序列和第二数据序列执行MAC操作以生成不对称MAC输出。第一数据序列和第二数据序列都是不对称量化的。处理单元还包括累加器硬件单元,用于与MAC操作同时累积第一数据序列以产生累积的输出。处理单元还包括乘法和添加(Mad)硬件单元,用于将累积输出乘以第二偏移以产生乘法输出,并添加乘法输出,非对称MAC输出和之前计算的预计值。运行时生成最终输出。第二偏移指示相对于零的第二数据序列的不对称量。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号