首页> 外国专利> POWER-EFFICIENT HYBRID TRAVERSAL APPARATUS AND METHOD FOR CONVOLUTIONAL NEURAL NETWORK ACCELERATOR ARCHITECTURE

POWER-EFFICIENT HYBRID TRAVERSAL APPARATUS AND METHOD FOR CONVOLUTIONAL NEURAL NETWORK ACCELERATOR ARCHITECTURE

机译:用于卷积神经网络加速器架构的高功效混合遍历设备和方法

摘要

In order to receive a plurality of input feature map (IFM) microbatch from a pixel memory, receive a plurality of kernel microbatch from kernel memory 122, and obtain a plurality of output feature map (OFM) microbatch, The plurality of input feature map micro-batch and the plurality of kernel micro-batch while reusing the plurality of kernel micro-batch based on a kernel reuse factor for at least one of direct convolution (DConv) and Winograd convolution (WgConv) A convolutional neural network accelerator architecture for multiplying by and recording the result of multiplying the plurality of input feature map micro-batch and the plurality of kernel micro-batch in the pixel memory for quantization, non-linear function, and output feature map micro-batch generated after pooling. It relates to a hybrid traversal apparatus and method for.
机译:为了从像素存储器接收多个输入特征图(IFM)微匹配,从内核存储器122接收多个内核微偶,并且获得多个输出特征图(OFM)微匹配,多个输入特征映射MICRO - 基于直接卷积(DCONV)和WinoGrad卷积(WGCONV)的核心重用因子重用多个内核微批量的核心微批次,用于重用用于直接卷积(DCONV)和WinoGrad卷积(WGCONV)的卷积神经网络加速器架构,用于乘以乘以并记录将多个输入特征映射微批处理和多个内核微批次乘以在像素存储器中进行量化,非线性函数和输出特征图在池中产生的微批次。它涉及一种混合遍历装置和方法。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号