Rotating electric machinery and the like wherein the magnetic iron cores of the apparatus are replaced by a superconductor winding which provides a high intensity field for electromagnetic interaction within the machinery. The apparatus described contains a first armature which is always wound and which, when energized, has an armature field which has motion relative to the armature. The field of the superconducting winding and the field of the armature in operating apparatus are locked together, but are permitted to have small relative angular displacement therebetween. A second armature which may or may not be wound, depending upon the particular embodiment of the apparatus is disposed in the gap between the superconducting winding and the wound armature. The second armature carries electric currents induced or otherwise created therein, these electric currents interact with the field in the gap to create mechanical forces upon the second armature. These forces are reaction-type forces and equal and opposite to the reaction occurring upon the wound armature thereby removing all or substantially all reaction forces from the superconductor winding.
展开▼