Intracavity Raman lasers comprising a pump resonator and a Raman resonator that eliminates alignment problems associated with multi- mirror intracavity lasers. The pump resonators include a laser rod and a pump source. In one embodiment, a first retroreflector is disposed at one end of the pump resonator, and an output mirror is disposed at an opposite end thereof. A Q-switch, a dichroic mirror, and a prism are disposed between the laser rod and the output mirror. The pump resonator radiates pump energy at a first wavelength (1.06 &mgr;m) between the first retroreflector and the output mirror. The Raman resonator includes a Raman gas cell having first and second lenses disposed on opposite ends thereof for focusing laser energy into the Raman cell, and a second retroreflector that forms one end of the Raman resonator. The output mirror forms an opposite end of the cell, and the dichroic mirror and the prism are disposed between the second retroreflector and the first lens. The Raman resonator radiates Raman laser energy at a second wavelength (1. 54 &mgr;m) between the second retroreflector and the output mirror. A second embodiment eliminates the second retroreflector and dichroic mirror and moves the position of the Q-switch to a point between the retroreflector and the laser rod. The present lasers are extremely insensitive to misalignment and have eyesafe output energy and acceptable beam divergence. The present lasers, in a production design, may be mechanically toleranced so that no optical alignment is necessary. Due to their self-aligning nature, the present lasers have fewer components and operate at higher pulse repetition frequencies than conventional multi- mirror intracavity lasers.
展开▼