首页> 外国专利> Super self-align process for fabricating submicron CMOS using micron design rule fabrication equipment

Super self-align process for fabricating submicron CMOS using micron design rule fabrication equipment

机译:使用微米设计规则制造设备制造亚微米CMOS的超自对准工艺

摘要

Submicron channel length FET is fabricated using larger (e.g., 1 micron) design rule fabrication equipment. A polysilicon layer (34) is first formed over an active device region (28). The following transistor elements are then sequentially formed using a single mask opening (38): [1] threshold adjust implant (40) by implanting impurity ions into the active device region surface; [2] LDD implant regions (42) by implanting impurity ions into lower portion of the polysilicon layer (38); and [3] source/drain doped implant regions (44) by implanting impurity ions into the upper portion of polysilicon layer (38). A gate opening (60) is next formed in the polysilicon layer (38) and overlying dielectric layer (57) using large design rule lithography to pattern, and then by etching. Sidewall spacers (66) are formed at a submicron distance apart in the gate opening (60), defining gate length (68) therebetween. LDD doped implant regions (42) and source/drain doped implant regions (44) driven- in from polysilicon layer (38) into the active device region (28), forming LDD regions (72) and source/drain regions (74). A gate oxide (63) is grown between spacers (66) in self-align position. A gate polysilicon contact (80) is formed. Metal gate contact (86) is formed directly above the gate polysilicon contact (80), centered over gate oxide (63), providing centered metal-polysilicon contact (87). Metal source/drain contacts (90) and intermediate isolation layer (84) are formed to complete FET. Submicron FET having a reduced length (112) active device region (28) and/or centered gate metal-polysilicon contact (87) is provided.
机译:使用较大(例如1微米)设计规则制造设备来制造亚微米沟道长度FET。首先在有源器件区域(28)上方形成多晶硅层(34)。然后使用单个掩模开口(38)依次形成以下晶体管元件:[1]通过将杂质离子注入有源器件区域表面来阈值调节注入(40); [2]通过将杂质离子注入到多晶硅层(38)的下部中来进行LDD注入区域(42); [3]通过将杂质离子注入到多晶硅层(38)的上部中来形成源/漏掺杂的注入区(44)。接下来,使用大设计规则光刻在多晶硅层(38)和上覆介电层(57)中形成栅极开口(60),以对其进行图案化,然后通过蚀刻。侧壁间隔物(66)以小于亚微米的距离形成在栅极开口(60)中,从而限定了它们之间的栅极长度(68)。从多晶硅层(38)驱入有源器件区(28)的LDD掺杂注入区(42)和源/漏掺杂注入区(44),形成LDD区(72)和源/漏区(74)。在自对准位置的隔离物(66)之间生长栅极氧化物(63)。形成栅极多晶硅触点(80)。金属栅极触点(86)形成在栅极多晶硅触点(80)的正上方,以栅极氧化物(63)为中心,从而提供了中心的金属-多晶硅触点(87)。形成金属源极/漏极触点(90)和中间隔离层(84)以完成FET。提供具有减小的长度(112)的有源器件区域(28)和/或居中的栅极金属-多晶硅触点(87)的亚微米FET。

著录项

  • 公开/公告号US5643815A

    专利类型

  • 公开/公告日1997-07-01

    原文格式PDF

  • 申请/专利权人 HUGHES AIRCRAFT COMPANY;

    申请/专利号US19950484739

  • 发明设计人 MAW-RONG CHIN;TRUC QUANG VU;

    申请日1995-06-07

  • 分类号H01L21/8234;

  • 国家 US

  • 入库时间 2022-08-22 03:09:49

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号