首页> 外国专利> Fremgangsmåte for å danne en optimalisert neural nettverksmodul tilsiktet å simulere strömningsmodus for enflerfaset fluidström

Fremgangsmåte for å danne en optimalisert neural nettverksmodul tilsiktet å simulere strömningsmodus for enflerfaset fluidström

机译:用于模拟单相流体流动模式的优化神经网络模块的生成方法

摘要

- method for constructing a module (or hydrodynamic thermodynamic for example) intended to simulate a real time the flow mode at any point of a pipe, of a stream of the multiphase fluid comprising at least one liquid phase and at least one gas phase, so that it is best suited to the operating conditions are fixed on a certain number of structural parameters and physical defined relative to the pipe, and on a set of physical magnitudes defined (hydrodynamic or thermodynamic quantities, for example), with the range of variation are fixed to the parameters and the physical magnitudes. - it comprises the use of a system of simulation based on neural networks is not linear, with each of the inputs for the parameters of the structure and the physical magnitudes, and outputs which are available of the quantities necessary for the estimation of the flow mode, and at least one intermediate layer. The neural networks are determined iteratively to be adjusted to the values of a learning base with the predefined tables connecting different values obtained for the output data to the corresponding values of the input data. It uses a learning base adapted to the operating conditions imposed and it generates of the neural networks optimized fitting, at best, the operating conditions imposed. - applications in the modelling of flow of hydrocarbons in the pipes, for example.
机译:-构造模块的方法(例如,流体力学热力学),该模块旨在实时地模拟包括至少一种液相和至少一种气相的多相流体流在管道的任何点的实时流动模式,因此最适合工作条件的是固定在一定数量的结构参数和相对于管道的物理定义上,以及在一组定义的物理量(例如流体力学或热力学量)上,其变化范围为固定到参数和物理量。 -它包括使用基于非线性的神经网络的仿真系统,结构的参数和物理量的每个输入,以及可用于估计流动模式的量的可用输出,以及至少一个中间层。用预定义的表将要调整的神经网络迭代地调整为学习库的值,该预定义的表将为输出数据获得的不同值连接到输入数据的相应值。它使用一个适合于所施加的操作条件的学习基础,并生成神经网络,以最佳方式拟合所施加的操作条件。 -例如在管道中碳氢化合物流动建模中的应用。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号