首页> 外国专利> System and process for a fusion classification for insurance underwriting suitable for use by an automated system

System and process for a fusion classification for insurance underwriting suitable for use by an automated system

机译:适用于自动化系统的保险承保融合分类的系统和过程

摘要

A method and system for fusing a collection of classifiers used for an automated insurance underwriting system and/or its quality assurance is described. Specifically, the outputs of a collection of classifiers are fused. The fusion of the data will typically result in some amount of consensus and some amount of conflict among the classifiers. The consensus will be measured and used to estimate a degree of confidence in the fused decisions. Based on the decision and degree of confidence of the fusion and the decision and degree of confidence of the production decision engine, a comparison module may then be used to identify cases for audit, cases for augmenting the training/test sets for re-tuning production decision engine, cases for review, or may simply trigger a record of its occurrence for tracking purposes. The fusion can compensate for the potential correlation among the classifiers. The reliability of each classifier can be represented by a static or dynamic discounting factor, which will reflect the expected accuracy of the classifier. A static discounting factor is used to represent a prior expectation about the classifier's reliability, e.g., it might be based on the average past accuracy of the model, while a dynamic discounting is used to represent a conditional assessment of the classifier's reliability, e.g., whenever a classifier bases its output on an insufficient number of points it is not reliable.
机译:描述了一种用于融合用于自动保险承保系统和/或其质量保证的分类器集合的方法和系统。具体而言,融合了分类器集合的输出。数据的融合通常会导致分类器之间达成一定数量的共识和一定数量的冲突。共识将被测量并用于估计融合决策的置信度。基于融合的决策和置信度以及生产​​决策引擎的决策和置信度,可以使用比较模块来识别要审核的案例,要增加培训/测试集以重新调整生产的案例决策引擎,案例进行审查,或者可能只是出于跟踪目的而触发其发生的记录。融合可以补偿分类器之间的潜在相关性。每个分类器的可靠性可以由静态或动态折现因子表示,这将反映分类器的预期准确性。静态折现因子用于表示对分类器可靠性的先前期望,例如,它可能基于模型的平均过去准确性,而动态折现则用于表示对分类器可靠性的条件评估,例如分类器的输出基于不足的点数,这是不可靠的。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号