首页> 外国专利> handwritten or spoken word - recognition with the aid of neural networks

handwritten or spoken word - recognition with the aid of neural networks

机译:手写或口语单词-借助神经网络进行识别

摘要

A method and system for recognizing user input information including cursive handwriting and spoken words. A time-delayed neural network having an improved architecture is trained at the word level with an improved method, which, along with preprocessing improvements, results in a recognizer with greater recognition accuracy. Preprocessing is performed on the input data and, for example, may include resampling the data with sample points based on the second derivative to focus the recognizer on areas of the input data where the slope change per time is greatest. The input data is segmented, featurized and fed to the time-delayed neural network which outputs a matrix of character scores per segment. The neural network architecture outputs a separate score for the start and the continuation of a character. A dynamic time warp (DTW) is run against dictionary words to find the most probable path through the output matrix for that word, and each word is assigned a score based on the least costly path that can be traversed through the output matrix. The word (or words) with the overall lowest score (or scores) are returned. A DTW is similarly used in training, whereby the sample ink only need be labeled at the word level.
机译:一种用于识别用户输入信息的方法和系统,该用户输入信息包括草书和口语。使用改进的方法在单词级别训练具有改进的体系结构的时延神经网络,该方法与预处理的改进一起,导致具有更高识别精度的识别器。预处理是在输入数据上执行的,例如,可以包括基于二阶导数使用采样点对数据进行重新采样,以使识别器将注意力集中在输入数据的每次时间斜率变化最大的区域。输入数据被分割,特征化并馈送到延时神经网络,该神经网络输出每个分段的字符分数矩阵。神经网络体系结构为角色的开始和延续输出单独的分数。针对字典单词运行动态时间扭曲(DTW),以找到该单词通过输出矩阵的最可能路径,然后根据可以遍历输出矩阵的成本最低的路径为每个单词分配分数。返回总体得分最低的一个或多个单词。 DTW同样用于培训,因此样本墨水仅需在单词级别进行标记。

著录项

  • 公开/公告号DE69907513T2

    专利类型

  • 公开/公告日2003-11-13

    原文格式PDF

  • 申请/专利权人 MICROSOFT CORP. REDMOND;

    申请/专利号DE1999607513T

  • 发明设计人 GUHA ANGSHUMA;HALUPTZOK M.;PITTMAN A.;

    申请日1999-12-16

  • 分类号G10L15/16;G06K9/72;G01N33/543;A63F13/08;

  • 国家 DE

  • 入库时间 2022-08-21 22:40:07

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号