首页> 外国专利> improved five error system

improved five error system

机译:改进的五错误系统

摘要

An error correcting system transforms a degree-five error locator polynomial sigma (x) into the polynomial w(y)=y5=b2y2+b1y+b0, where b1=0 or 1, and y= sigma (x), and determines the roots of sigma (x) based on the roots of w(y). The polynomial w(y) has (2M)2 solutions over GF(2M), rather than (2M)5 solutions, since for any solution with b2=h2, b0=h0 and b1=1, there is no such solution with b2=h2, b0=h0 and b1=0. Conversely, if there is such a solution with b1=0 there are no such solutions with b1=1. The system can thus use a table that has 22M entries and is addressed by {b2, b0}. The table produces roots y=ri, i=0, 1, 2, 3, 4, and the system then transforms the roots y=ri to the roots of sigma (x) by calculating x= sigma -1(y). To further reduce the overall table storage needs, the table may include in each entry four roots ri, i=0, 1, 2, 3, and the system then calculates the associated fifth root r4 by adding the stored roots. The size of the look-up table can be even further reduced by (i) segmenting the Galois Field (2M) into conjugate classes; (ii) determining which of the classes contain values of b0 that correspond to solutions of w(y) with five distinct roots; (iii) representing each of these classes, respectively, by a single value of b0'=(b0)2k; and (iv) including in the table for each class only those solutions that correspond to representative values of b0'. The table then contains a relatively small number of sets of roots of each of the classes, with each set associated with a particular value of b2'=b22k. The roots of w(y) are determined by finding the value of k that produces b0' and b2', entering the look-up table using {b0', b2'}, raising the roots ri' produced by the table to the power -2k to produce y=ri, and then transforming the result into the roots of sigma (x) by x= sigma -1(y).
机译:纠错系统将五阶错误定位器多项式sigma(x)转换为多项式w(y)= y5 = b2y2 + b1y + b0,其中b1 = 0或1,y = sigma(x),并确定基于w(y)的根的sigma(x)的根。多项式w(y)在GF(2M)上具有(2M)2个解,而不是(2M)5个解,因为对于任何具有b2 = h2,b0 = h0和b1 = 1的解,对于b2没有这样的解= h2,b0 = h0和b1 = 0。相反,如果存在b1 = 0的解,那么b1 = 1的解就不存在。因此,系统可以使用具有22M条目并由{b2,b0}寻址的表。该表生成根y = ri,i = 0、1、2、3、4,然后系统通过计算x = sigma -1(y)将根y = ri转换为sigma(x)的根。为了进一步减少总体表存储需求,该表可在每个条目中包括四个根ri,i = 0、1、2、3,然后系统通过添加存储的根来计算关联的第五根r4。通过(i)将Galois字段(2M)分成共轭类,可以进一步减小查询表的大小。 (ii)确定哪个类别包含与具有五个不同根的w(y)的解相对应的b0值; (iii)通过b0'=(b0)2k的单个值分别代表这些类别中的每一个; (iv)在表格中为每个类别仅包括与b0'的代表值相对应的那些解。然后,该表包含每个类别的相对较少的根集合,每个集合与b2'= b22k的特定值关联。通过找到产生b0'和b2'的k的值来确定w(y)的根,使用{b0',b2'}进入查找表,将表产生的根ri'提高到幂。 -2k产生y = ri,然后通过x = sigma -1(y)将结果转换为sigma(x)的根。

著录项

  • 公开/公告号DE69837784D1

    专利类型

  • 公开/公告日2007-06-28

    原文格式PDF

  • 申请/专利权人 MAXTOR CORP.;

    申请/专利号DE1998637784T

  • 发明设计人 WENG LIH-JYH;SHEN BA-ZHONG;

    申请日1998-12-03

  • 分类号H03M13/00;H03M13/15;

  • 国家 DE

  • 入库时间 2022-08-21 20:27:22

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号