首页> 外国专利> Abnormal behavior detection system and method using automatic classification of multiple features

Abnormal behavior detection system and method using automatic classification of multiple features

机译:利用多特征自动分类的异常行为检测系统及方法

摘要

Described herein are a system and a method for abnormal behavior detection using automatic classification of multiple features. Features from various sources, including those extracted from camera input through digital image analysis, are used as input to machine learning algorithms. These algorithms group the features and produce models of normal and abnormal behaviors. Outlying behaviors, such as those identified by their lower frequency, are deemed abnormal. Human supervision may optionally be employed to ensure the accuracy of the models. Once created, these models can be used to automatically classify features as normal or abnormal. This invention is suitable for use in the automatic detection of abnormal traffic behavior such as running of red lights, driving in the wrong lane, or driving against traffic regulations.
机译:本文描述了用于使用多个特征的自动分类的异常行为检测的系统和方法。来自各种来源的功能(包括通过数字图像分析从相机输入中提取的功能)被用作机器学习算法的输入。这些算法对特征进行分组,并生成正常和异常行为的模型。外围行为(例如通过其较低频率识别的行为)被视为异常。可以选择使用人工监督来确保模型的准确性。一旦创建,这些模型可用于将要素自动分类为正常或异常。本发明适用于自动检测异常交通行为,例如红灯行驶,在错误的车道上行驶或违反交通法规行驶。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号