首页> 外国专利> LOW-FOOTPRINT ADAPTATION AND PERSONALIZATION FOR A DEEP NEURAL NETWORK

LOW-FOOTPRINT ADAPTATION AND PERSONALIZATION FOR A DEEP NEURAL NETWORK

机译:深层神经网络的低足迹自适应和个性化

摘要

The adaptation and personalization of a deep neural network (DNN) model for automatic speech recognition is provided. An utterance which includes speech features for one or more speakers may be received in ASR tasks such as voice search or short message dictation. A decomposition approach may then be applied to an original matrix in the DNN model. In response to applying the decomposition approach, the original matrix may be converted into multiple new matrices which are smaller than the original matrix. A square matrix may then be added to the new matrices. Speaker-specific parameters may then be stored in the square matrix. The DNN model may then be adapted by updating the square matrix. This process may be applied to all of a number of original matrices in the DNN model. The adapted DNN model may include a reduced number of parameters than those received in the original DNN model.
机译:提供了用于自动语音识别的深度神经网络(DNN)模型的自适应和个性化。可以在ASR任务(例如语音搜索或短消息口述)中接收包括一个或多个扬声器的语音功能的语音。然后可以将分解方法应用于DNN模型中的原始矩阵。响应于应用分解方法,原始矩阵可以被转换成比原始矩阵小的多个新矩阵。然后可以将平方矩阵添加到新矩阵。然后可以将特定于说话者的参数存储在方矩阵中。然后可以通过更新平方矩阵来适应DNN模型。该过程可以应用于DNN模型中的所有多个原始矩阵。适配的DNN模型可以包括比原始DNN模型中接收到的参数数量更少的参数。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号