首页> 外国专利> METHOD AND APPARATUS FOR DETECTING ABNORMAL INPUT DATA BY USING CONVOLUTIONAL NEURAL NETWORK

METHOD AND APPARATUS FOR DETECTING ABNORMAL INPUT DATA BY USING CONVOLUTIONAL NEURAL NETWORK

机译:卷积神经网络的异常输入数据检测方法及装置

摘要

The present invention relates to a technology for detecting abnormal web traffic, which can autonomously learn characteristics of target data to be learned and predicted by a web traffic detection algorithm, thereby enabling more relevant characteristics to be extracted than a conventional method and enabling various attacks to be detected. According to an embodiment of the present invention, provided is a method for detecting abnormal input data by using a convolutional neural network, the method comprising the steps of: (a) when input data including one or more sequentially arranged pieces of text is acquired as a training set, converting, by an apparatus, the input data into data in a matrix form, or supporting the conversion; (b) performing, by the apparatus, a convolution operation on the data in the matrix form by using the predetermined number of first kernels, or supporting this performance; (c) converting, by the apparatus, the data, on which the convolution operation has been performed, into data in a predetermined matrix form, and performing a fully connected operation, adapted to generate a neural network layer, by using the data in the predetermined matrix form or supporting this performance; (d) performing, by the apparatus, a deconvolution operation, reverse to the convolution operation, on data in a matrix form generated as a result of the performance of the fully connected operation, or supporting this performance; and (e) calculating, by the apparatus, a value of a difference between the converted input data and a result of the deconvolution operation, or supporting the calculation.;COPYRIGHT KIPO 2016
机译:本发明涉及一种用于检测异常Web流量的技术,该技术可以自主地学习将要通过Web流量检测算法学习和预测的目标数据的特征,从而能够提取比常规方法更多的相关特征,并且能够进行各种攻击。被检测到。根据本发明的实施例,提供了一种通过使用卷积神经网络来检测异常输入数据的方法,该方法包括以下步骤:(a)当获取包括一个或多个顺序排列的文本的输入数据时,训练集,通过设备将输入数据转换为矩阵形式的数据,或支持转换; (b)通过所述设备,通过使用预定数量的第一内核或者支持这种性能,对矩阵形式的数据进行卷积运算; (c)通过该装置将已经执行了卷积运算的数据转换为预定矩阵形式的数据,并通过使用该装置中的数据执行适于生成神经网络层的全连接运算。预定的矩阵形式或支持此性能; (d)由所述设备对由于所述全连接操作的执行而产生的矩阵形式的数据执行反卷积操作或与所述卷积操作相反的解卷积操作;或(e)通过该设备计算转换后的输入数据与去卷积运算结果之间的差值,或者支持该计算。COPYRIGHT KIPO 2016

著录项

  • 公开/公告号KR101644998B1

    专利类型

  • 公开/公告日2016-08-02

    原文格式PDF

  • 申请/专利权人 EXBRAIN INCORPORATION;

    申请/专利号KR20150183898

  • 发明设计人 CHOI JIN YOUNGKR;PARK SEUNG YOUNGKR;

    申请日2015-12-22

  • 分类号H04L29/06;G06N3/02;G06N3/08;

  • 国家 KR

  • 入库时间 2022-08-21 14:12:11

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号