首页> 外国专利> EMULATOR-BASED MALWARE LEARNING AND DETECTION

EMULATOR-BASED MALWARE LEARNING AND DETECTION

机译:基于仿真器的恶意软件学习与检测

摘要

Methods and systems are described for malware learning and detection. According to one embodiment, an antivirus (AV) engine includes a training mode for internal lab use, for example, and a detection mode for use in commercial deployments. In training mode, an original set of suspicious patterns is generated by scanning malware samples. A set of clean patterns is generated by scanning clean samples. A revised set of suspicious patterns is created by removing the clean patterns from the original set. A further revised set of suspicious patterns is created by: (i) applying a statistical filter to the first revised set; and (ii) removing any suspicious patterns therefrom that do not meet a predefined frequency of occurrence. A detection model, based on the further revised set, can then be used in detection mode to flag executables as malware when the presence of one or more of the suspicious patterns is identified.
机译:描述了用于恶意软件学习和检测的方法和系统。根据一个实施例,防病毒(AV)引擎包括例如用于内部实验室使用的训练模式和用于商业部署的检测模式。在训练模式下,通过扫描恶意软件样本来生成原始的可疑模式集。通过扫描干净的样本可以生成一组干净的图案。通过从原始集中删除干净的图案,可以创建一组可修改的可疑图案。通过以下方式创建进一步修订的可疑模式集:(i)对第一修订集应用统计过滤器; (ii)从中删除任何不符合预定发生频率的可疑模式。然后,基于进一步修订的集的检测模型可以在检测模式下用于在识别出一个或多个可疑模式的存在时将可执行文件标记为恶意软件。

著录项

  • 公开/公告号US2016381042A1

    专利类型

  • 公开/公告日2016-12-29

    原文格式PDF

  • 申请/专利权人 FORTINET INC.;

    申请/专利号US201514754522

  • 发明设计人 JIE ZHANG;

    申请日2015-06-29

  • 分类号H04L29/06;G06N99/00;G06F17/30;

  • 国家 US

  • 入库时间 2022-08-21 13:46:22

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号