首页> 外国专利> LINEAR RESOLUTION PROBLEMS NP-COMPLETE

LINEAR RESOLUTION PROBLEMS NP-COMPLETE

机译:线性解决问题NP完整

摘要

In mathematics (and therefore in computer science), there is a category of problems that we call NP-Complete (NP-difficult), because their resolution is complex and generally requires a computation of a complexity of type kPN. With for example P as dimension of the space of the problem, N another dimension in the problem (number of samples ...). The documentation and research on these problems is abundant, indeed, this type of problem is the nightmare of mathematicians and computers as soon as N is growing. One of the typical examples of NP-Complete problems is that of the "commercial traveler". It is for this problem that we propose an algorithm of linear complexity to find at first sight the ideal solution, knowing that it is established that if an NP-complete problem has a solution (polynomial or linear), then all NP-Difficult problems can also be solved in polynomial or linear time. The proposed algorithm known as the Leafar spiral simply consists in superimposing on the "cloud" of points representing the cities, a Fibonacci spiral (spiral of increasing ration) placing the center of this spiral on the center. of gravity of the point cloud, then to rotate it according to a particular method. Therefore, the ideal path can be easily constructed by traversing the spiral and by "collecting" the points on either side, in the order of intersection with the perpendicular to the tangent to the spiral, provided that they are not closer to another spiral arm. This algorithm is recursive because, starting from 4 points (or more) fulfilling certain conditions of local density, one eventually attends the formation of a local "cluster", which needs to be treated itself as a sub-problem, with its own sub-spiral, then connected to the mother macro-spiral. Moreover, the algorithm contains an accretion step, which corresponds to the capture of one or more cities located in one arm of the spiral, by the path of an adjacent arm, when it is sufficiently close to it so that the capture optimizes the way. Thus, any set of seemingly chaotic points can be organized into a perfect "fractalization" according to the pattern of the Fibonacci spiral. The fields of application are very numerous: solving all the problems of graphs and combinatorics, cosmology, meteorology, operational calculation ... In fact, all the domains requiring complex calculations can benefit from this invention.
机译:在数学中(因此在计算机科学中),存在一类问题,我们称其为NP-完全(NP-difficult),因为它们的解析度很复杂,并且通常需要计算kPN类型的复杂度。以P为问题空间的维数,N为问题的另一个维数(样本数...)。关于这些问题的文献和研究非常丰富,实际上,这种问题是N增长后数学家和计算机的噩梦。 NP-完全问题的典型例子之一就是“商业旅行者”。正是针对这个问题,我们提出了一种线性复杂度算法,以便乍看之下找到理想的解决方案,因为它可以确定,如果一个NP完全问题具有一个解决方案(多项式或线性),那么所有NP困难问题都可以也可以用多项式或线性时间求解。所提出的算法被称为“ Leafar螺旋”,其简单之处在于,在代表城市的点的“云”上叠加了一个斐波纳契螺旋(逐渐增加口粮的螺旋),将该螺旋的中心置于中心。点云的重力,然后根据特定方法旋转它。因此,可以通过遍历螺旋线并通过“收集”任一侧上的点(与垂直于螺旋线切线的相交顺序)来轻松构造理想路径,前提是它们不靠近另一个螺旋臂。此算法具有递归性,因为它从满足特定局部密度条件的4个点(或更多个点)开始,最终参与了局部“簇”的形成,需要将其自身视为一个子问题,并且需要自己的子子集螺旋状,然后连接到母亲的宏观螺旋状。此外,该算法还包含一个累积步骤,该步骤对应于在相邻支路足够近时通过相邻支路的路径捕获位于螺旋形一个支路中的一个或多个城市的步骤。因此,根据斐波那契螺旋线的模式,任何看似混乱的点都可以组织成一个完美的“分形”。应用领域非常广泛:解决图形和组合图,宇宙学,气象学,运算等所有问题。实际上,所有需要复杂计算的领域都可以从本发明中受益。

著录项

  • 公开/公告号FR3041799A1

    专利类型

  • 公开/公告日2017-03-31

    原文格式PDF

  • 申请/专利权人 RAPHAEL WISENBERG;

    申请/专利号FR20150002012

  • 发明设计人 RAPHAEL WISENBERG;

    申请日2015-09-28

  • 分类号G06Q10/04;G06F17/10;

  • 国家 FR

  • 入库时间 2022-08-21 13:21:19

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号