首页> 外国专利> SYSTEM AND METHOD TO TEACH AND EVALUATE IMAGE GRADING PERFORMANCE USING PRIOR LEARNED EXPERT KNOWLEDGE BASE

SYSTEM AND METHOD TO TEACH AND EVALUATE IMAGE GRADING PERFORMANCE USING PRIOR LEARNED EXPERT KNOWLEDGE BASE

机译:利用先前的专家知识基础来教学和评估图像分级性能的系统和方法

摘要

A learning sub-system models search patterns of multiple experts in analyzing an image using a recurrent neural network (RNN) architecture, creates a knowledge base that models expert knowledge. A teaching sub-system teaches the search pattern captured by the RNN model and presents to a learning user the information for analyzing an image. The teaching sub-system determines the teaching image sequence based on a difficulty level identified using image features, audio cues, expert confidence and time taken by experts. An evaluation sub-system measures the learning user's performance in terms of search strategy that is evaluated against the RNN model and provides feedback on overall sequence followed by the learning user and time spent by the learning user on each region in the image.
机译:一个学习子系统使用递归神经网络(RNN)架构对多个专家的搜索模式进行建模,以分析图像,从而创建一个对专家知识进行建模的知识库。教学子系统教学RNN模型捕获的搜索模式,并向学习用户提供用于分析图像的信息。教学子系统根据使用图像特征,音频提示,专家的信心和专家花费的时间确定的难易程度确定教学图像序列。评估子系统根据针对RNN模型评估的搜索策略来衡量学习用户的表现,并提供有关学习用户所遵循的总体顺序以及学习用户在图像每个区域上花费的时间的反馈。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号