首页> 外国专利> LEARNING METHOD AND LEARNING DEVICE FOR ADJUSTING PARAMETER OF CNN BY USING MULTI-SCALE FEATURE MAP, AND TESTING METHOD AND TESTING DEVICE USING THE SAME

LEARNING METHOD AND LEARNING DEVICE FOR ADJUSTING PARAMETER OF CNN BY USING MULTI-SCALE FEATURE MAP, AND TESTING METHOD AND TESTING DEVICE USING THE SAME

机译:利用多尺度特征图调整CNN参数的学习方法和学习装置,以及使用该方法的测试方法和设备

摘要

To provide a learning method for supporting acquisition of a bounding box corresponding to an object on a learning image from multi-scaled feature maps by using a CNN.SOLUTION: The learning method includes steps of: allowing an N-way RPN to apply certain operations to at least two specific feature maps to acquire a predetermined number of proposal boxes; allowing an N-way pooling layer to generate multiple pooled feature maps by applying pooling operations to respective areas corresponding to a predetermined number of proposal box areas on the at least two specific feature maps; and allowing an FC layer to acquire information on pixel data of the bounding box, and allowing a loss layer to acquire first comparative data, thereby adjusting at least one of parameters of the CNN by using the first comparative data during a backpropagation process.SELECTED DRAWING: Figure 3
机译:提供一种支持通过使用CNN从多尺度特征图上获取与学习图像上的对象相对应的包围盒的学习方法。解决方案:该学习方法包括以下步骤:允许N向RPN应用某些操作至少两个特定特征图,以获取预定数量的建议框;通过将池化操作应用于与至少两个特定特征图上的预定数目的提议框区域相对应的各个区域,来允许N向池化层生成多个池化特征图;允许FC层获取有关边界框的像素数据的信息,并允许损失层获取第一比较数据,从而在反向传播过程中通过使用第一比较数据来调整CNN的至少一个参数。 :图3

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号