首页> 外国专利> Learning method and learning device for object detector based on CNN to be used for multi-camera or surround view monitoring using image concatenation and target object merging network, and testing method and testing device using the same

Learning method and learning device for object detector based on CNN to be used for multi-camera or surround view monitoring using image concatenation and target object merging network, and testing method and testing device using the same

机译:基于CNN的目标检测器的学习方法和学习装置,将用于利用图像级联和目标对象合并网络进行多摄像机或全景监视,以及使用该方法的测试方法和测试装置

摘要

A method for learning parameters of an object detector based on a CNN adaptable to customers' requirements such as KPI by using an image concatenation and a target object merging network is provided. The CNN can be redesigned when scales of objects change as a focal length or a resolution changes depending on the KPI. The method includes steps of: a learning device instructing an image-manipulating network to generate n manipulated images; instructing an RPN to generate first to n-th object proposals respectively in the manipulated images, and instructing an FC layer to generate first to n-th object detection information; and instructing the target object merging network to merge the object proposals and merge the object detection information. In this method, the object proposals can be generated by using lidar. The method can be useful for multi-camera, SVM(surround view monitor), and the like, as accuracy of 2D bounding boxes improves.
机译:提供了一种通过使用图像级联和目标对象合并网络来基于CNN学习适合于客户需求的CNN的对象检测器的参数的方法。当对象的比例随着焦距或分辨率的变化取决于KPI时,可以重新设计CNN。该方法包括以下步骤:学习设备指示图像操纵网络生成n个操纵图像;指示RPN分别在操纵图像中生成第一至第n个对象提议,并指示FC层生成第一至第n个对象检测信息;指示目标对象合并网络合并对象提议和对象检测信息。在这种方法中,可以使用激光雷达生成目标建议。随着2D边界框的准确性的提高,该方法可用于多摄像机,SVM(全景监视器)等。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号