首页> 外国专利> DEEP NEURAL NETWORK ARCHITECTURE FOR SEMANTIC SEGMENTATION OF FORM IMAGES

DEEP NEURAL NETWORK ARCHITECTURE FOR SEMANTIC SEGMENTATION OF FORM IMAGES

机译:深度神经网络架构,用于表单图像的语义分割

摘要

#$%^&*AU2018203368A120190228.pdf#####DEEP NEURAL NETWORK ARCHITECTURE FOR SEMANTIC SEGMENTATION OF FORM IMAGES ABSTRACT OF THE DISCLOSURE A method and system for detecting and extracting accurate and precise structure in documents. A high-resolution image of documents is segmented into a set of tiles. Each tile is processed by a convolutional network and subsequently by a set of recurrent networks for each row and column. A global-lookup process is disclosed that allows "future" information required for accurate assessment by the recurrent neural networks to be considered. Utilization of high-resolution image allows for precise and accurate feature extraction while segmentation into tiles facilitates the tractable processing of the high-resolution image within reasonable computational resource bounds.1/14 1z 0UE D CL IV)V 0 * 0 E' CC~ 2 mw a U) 0=
机译:#$%^&* AU2018203368A120190228.pdf #####用于语义分割的深层神经网络架构表格图像披露摘要一种用于检测和提取文档中的精确结构的方法和系统。一种文档的高分辨率图像被分割为一组图块。每个图块都由一个卷积网络,然后由一组针对每一行和每一列的递归网络组成。公开了一种全局查找过程,该过程允许准确获取所需的“未来”信息由递归神经网络进行评估。利用高分辨率图像允许精确而准确的特征提取,同时将其分割为图块有助于在合理的计算资源内对高分辨率图像进行可处理的处理界限。1/141z0UDCLIV)V0 * 0 E'CC〜2兆瓦U)0 =

著录项

  • 公开/公告号AU2018203368A1

    专利类型

  • 公开/公告日2019-02-28

    原文格式PDF

  • 申请/专利权人 ADOBE SYSTEMS INCORPORATED;

    申请/专利号AU20180203368

  • 发明设计人 KRISHNAMURTHY BALAJI;SARKAR MAUSOOM;

    申请日2018-05-14

  • 分类号G06T1/40;G06N3/02;

  • 国家 AU

  • 入库时间 2022-08-21 11:55:54

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号