首页> 外国专利> VARIANT CLASSIFIER BASED ON DEEP NEURAL NETWORKS

VARIANT CLASSIFIER BASED ON DEEP NEURAL NETWORKS

机译:基于深层神经网络的变量分类器

摘要

We introduce a variant classifier that uses trained deep neural networks to predict whether a given variant is somatic or germline. Our model has two deep neural networks: a convolutional neural network (CNN) and a fully-connected neural network (FCNN), and two inputs: a DNA sequence with a variant and a set of metadata features correlated with the variant. The metadata features represent the variant's mutation characteristics, read mapping statistics, and occurrence frequency. The CNN processes the DNA sequence and produces an intermediate convolved feature. A feature sequence is derived by concatenating the metadata features with the intermediate convolved feature. The FCNN processes the feature sequence and produces probabilities for the variant being somatic, germline, or noise. A transfer learning strategy is used to train the model on two mutation datasets. Results establish advantages and superiority of our model over traditional classifiers.
机译:我们介绍了一种变体分类器,该变体分类器使用训练有素的深度神经网络来预测给定的变体是体细胞还是种系。我们的模型具有两个深层神经网络:卷积神经网络(CNN)和完全连接神经网络(FCNN),以及两个输入:具有变异体的DNA序列和与变异体相关的一组元数据特征。元数据功能表示变体的变异特征,读取映射统计信息和出现频率。 CNN处理DNA序列并产生中间的卷积特征。通过将元数据特征与中间卷积特征进行级联来导出特征序列。 FCNN处理特征序列并产生变异的体细胞,种系或噪声的概率。转移学习策略用于在两个突变数据集上训练模型。结果证明了我们的模型优于传统分类器的优势和优越性。

著录项

  • 公开/公告号EP3622524A1

    专利类型

  • 公开/公告日2020-03-18

    原文格式PDF

  • 申请/专利权人 ILLUMINA INC.;

    申请/专利号EP20190721182

  • 发明设计人 WISE AARON;KRUGLYAK KRISTINA M.;

    申请日2019-04-12

  • 分类号G16B40/20;G16B20/20;

  • 国家 EP

  • 入库时间 2022-08-21 11:39:42

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号