首页> 中国专利> 基于深度学习的网壳结构最不利缺陷模态创建方法

基于深度学习的网壳结构最不利缺陷模态创建方法

摘要

本发明公开了一种基于深度学习的网壳结构最不利缺陷模态创建方法。该方法基于生成对抗网络模型,由生成网络和判别网络两个部分组成。生成网络用于建立输入层网壳结构的特征参数与输出层网壳结构初始几何缺陷模态之间的特征映射关系,以较为准确地生成网壳结构的最不利几何缺陷模态。判别网络用于鉴别有限元给出的、生成网络生成的网壳结构最不利几何缺陷,优化生成网络的参数,提升生成网络的网壳最不利缺陷生成能力。最后,使用ANSYS有限元软件计算,验证该最不利缺陷模态创建方法的有效性和准确性。本发明基于深度学习强大的数值分析和拟合能力,能够建立网壳结构多个参数和最不利几何缺陷的关系,计算结果精度高。

著录项

  • 公开/公告号CN115688229A

    专利类型发明专利

  • 公开/公告日2023-02-03

    原文格式PDF

  • 申请/专利权人 河海大学;

    申请/专利号CN202211270534.7

  • 发明设计人 伞冰冰;张业成;毋凯冬;王倩;

    申请日2022-10-18

  • 分类号G06F30/13;G06F30/23;G06F30/27;G06N3/045;G06N3/0464;G06N3/0475;G06N3/084;G06N3/094;G06F119/02;G06F119/14;

  • 代理机构南京理工信达知识产权代理有限公司;

  • 代理人刘莎

  • 地址 211100 江苏省南京市江宁区佛城西路8号

  • 入库时间 2023-06-19 18:34:06

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2023-02-03

    公开

    发明专利申请公布

说明书

技术领域

本发明涉及一种基于深度学习的网壳结构最不利缺陷模态创建方法。

背景技术

网壳结构具有造型美观、结构构成灵活多样等众多优点,近年来已被广泛应用于各种复杂的实际工程中。与传统结构相比,网壳结构受力相对复杂,实际工程中网壳结构的破坏一般是由于结构失稳引起的,结构变形较大,表现出明显的非线性。因此设计网壳结构时需要考虑结构的初始几何缺陷敏感性。

目前已有国内外学者对网壳结构的几何缺陷敏感性进行了研究,但因非线性分析计算复杂、最不利缺陷模态的确定依赖大规模数值计算及研究经验,难以形成准确、高效、实用的最不利缺陷模态创建方法。

深度学习能通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示,因此可基于极限承载力最小原则开发网壳结构最不利缺陷模态生成模型,形成安全可靠、实用性强的最不利初始几何缺陷模态创建程序模块,保证网壳结构极限承载力计算的安全性和可靠性。

发明内容

针对上述技术问题,本发明提出一种基于深度学习的网壳结构最不利缺陷模态创建方法。该方法基于生成对抗网络的深度学习,包含生成网络和判别网络两个部分。其中生成网络通过组合低阶特征来表征高阶属性,分析输入和输出之间的最优映射关系,即网壳结构的特征参数与网壳结构最不利初始几何缺陷模态的映射关系,生成准确的最不利几何缺陷模态。判别网络对真实的网壳初始几何缺陷和生成网络生成的网壳初始几何缺陷进行判别,不断优化生成网络,使生成网络的生成结果达到真实水平。

为了达成上述目的,本发明的解决方案是:

一种基于深度学习的网壳结构最不利缺陷模态创建方法,具体方法步骤如下:

步骤1,确定网壳结构的特征参数;

步骤2,建立生成对抗网络的数据集;

步骤3,搭建适用于生成网壳结构的最不利缺陷模态的生成对抗网络模型;

步骤4,训练生成对抗网络模型,并基于训练完成的生成对抗网络模型生成网壳结构的最不利缺陷模态。

步骤5,以步骤4得到的网壳结构的最不利缺陷模态作为实际缺陷,对网壳结构进行力学性能分析,完成网壳结构的非线性分析计算。

进一步地,所述网壳结构的非线性计算问题表达式如下:

其中,X为网壳结构的特征参数;Y为生成对抗网络模型的生成结果,即网壳结构的最不利缺陷模态;Z为网壳结构的非线性承载力;S为网壳结构形状参数;Ω为网壳结构形状参数允许设计范围的集合;w

进一步地,步骤1中网壳结构的特征参数包括网壳形状、跨度、矢跨比、杆件类型及控制点坐标。

进一步地,将网壳结构的特征参数作为输入,将网壳结构的最不利缺陷模态作为标签数据,建立包括图像与坐标矩阵两种形式的生成对抗网络的数据集。

进一步地,步骤3所搭建的生成对抗网络模型由级联的生成网络和判别网络两部分组成,生成网络由卷积层、汇聚层、全连接层交叉堆叠而成,判别网络为两类分类器:

卷积层对输入进行卷积,加上偏置,再由非线性激活函数得到输出特征映射;

汇聚层对卷积层的输出特征映射进行特征选择,降低特征数量;

全连接层对汇聚层选择的特征进行非线性组合,输出样本;

判别网络区分一个样本是来自于真实分布还是来自于生成网络的生成结果,当判别网络认为样本来自于真实分布时标记为1,当判别网络认为样本为来自于生成网络的生成结果时标记为0,判别网络的输出结果为样本来自于真实分布的概率。

进一步地,采用双目标方式对生成对抗网络模型进行训练;

判别网络的目标函数为:

生成网络的目标函数为:

min

其中x~p

进一步地,训练生成对抗网络模型时,采用梯度下降法以及误差反向传播算法,具体为:

(4-1)计算参数梯度

损失函数关于卷积层第n层的卷积核W

其中Y和

损失函数关于卷积层第n层的第m个偏置的b

(4-2)计算误差项

汇聚层:

汇聚层第n层的第m个特征映射的误差项

其中Z

卷积层:

卷积层第n层的第m个特征映射的误差项

(4-3)迭代训练生成对抗网络

每次迭代时,判别网络更新K次,而生成网络更新1次:

第一步,设置生成网络G和判别网络D的初始参数;

第二步,将步骤2的数据集及定义的噪声输入生成网络G,生成网络G生成样本,输入判别网络D;固定生成网络G,训练判别网络D;

第三步,循环更新K次判别网络D之后,更新1次生成网络G;

多次更新迭代后,生成对抗网络达到纳什平衡,完成训练。

本发明还提供一种网壳结构的非线性分析方法,基于如上所述的方法生成网壳结构的最不利缺陷模态后,将最不利缺陷模态由图像形式转化为坐标矩阵的形式与网壳结构的特征参数输入ANSYS有限元软件中,对网壳结构进行重新建模并进行非线性分析,确定网壳结构的极限承载力。

本发明还提供一种基于深度学习的网壳结构最不利缺陷模态创建设备,包括:

存储器,用于存储计算机程序;

处理器,用于执行所述计算机程序时实现如上所述的基于深度学习的网壳结构最不利缺陷模态创建方法的步骤。

本发明还提供一种计算机可读存储介质,所述计算可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的基于深度学习的网壳结构最不利缺陷模态创建方法的步骤。

本发明与现有技术相比,其显著优点是:

1.现有的技术在进行网壳结构非线性分析时计算相对保守,实际工程中网壳结构的初始几何缺陷非最不利状态,而深度学习能够准确地生成网壳结构的最不利缺陷模态,计算结果准确;

2.网壳结构非线性分析的计算复杂,且建模时需根据物理条件简化计算,工作量大且依赖大规模数值模拟计算及研究经验,而深度学习具有强大的数值分析能力,且深度学习是一种数据驱动性分析方法,受实际物理意义的影响小,计算结果准确,分析速度快;

3.网壳结构的非线性计算变量较多,传统有限元方法分析网壳结构的非线性计算变量与最不利缺陷模态的关系相对困难,而深度学习能够分析多个变量和网壳结构的最不利缺陷模态的关系,分析结果准确;

4.使用的生成对抗网络是一种全新的深度学习技术,在图像处理领域应用广泛,生成对抗网络通过对抗训练的方式来使得生成网络产生的图像为实际图像,与传统有限元分析相比,使用生成对抗网络进行非线性分析结果直观,计算准确。

附图说明

图1为基于深度学习的网壳结构最不利缺陷模态创建方法流程图;

图2为卷积层中从输入特征映射组X到输出特征映射Y

图3为生成网络结构示意图;

图4为生成对抗网络的流程图;

图5为由网壳坐标矩阵建立的网壳模型图像;

图6为网壳初始模型与变形后模型。

具体实施方式

下面结合具体实施例对本发明做进一步的详细说明。

本发明针对网壳结构非线性计算复杂,最不利缺陷模态的难以确定的问题,提出一种基于深度学习的网壳结构最不利缺陷模态创建方法。该方法使用生成对抗网络进行分析,可较为准确地生成网壳结构的最不利几何缺陷模态,保证网壳结构非线性分析的准确性和安全性。

如图1所示,本发明方法的流程如下:

步骤1,确定网壳结构的特征参数;

步骤2,建立生成对抗网络的数据集。建立数据集时分别建立图像与坐标矩阵两种形式的数据集,且能通过坐标变换程序相互转化;

步骤3,搭建适用于生成网壳结构的最不利缺陷模态的生成对抗网络模型,由生成网络和判别网络组成,主要内容为:

(3-1)卷积层设计

(3-2)汇聚层设计

(3-3)生成网络设计

(3-4)判别网络设计

(3-5)生成对抗网络设计

步骤4:训练生成对抗网络模型参数,主要内容为:

(4-1)参数梯度计算

(4-2)误差项计算

(4-3)生成对抗网络训练

步骤5,完成网壳结构的非线性分析。由生成网络生成网壳结构的最不利缺陷模态后,将图像转化为坐标矩阵的形式与网壳结构的特征参数输入ANSYS有限元软件中,对网壳结构进行重新建模并进行非线性分析,确定网壳结构的极限承载力。

在一个实施例中,网壳结构非线性计算问题表达式如下:

其中,X为网壳结构的特征参数;Y为生成对抗网络的生成结果,即网壳结构的最不利缺陷模态;Z为网壳结构的非线性承载力;S为网壳结构形状参数;Ω为网壳结构形状参数允许设计范围的集合;w

在一个实施例中,在ANSYS有限元软件中对网壳结构进行屈曲分析,选取多个整体屈曲模态,组合并生成一系列网壳结构的初始几何缺陷进行非线性分析,以极限承载力最小的原则得到网壳结构的最不利缺陷模态和对应的网壳结构的特征参数,用于检测生成对抗网络的生成结果。将网壳结构的特征参数和网壳结构的最不利缺陷模态作为深度神经网络的输入特征和标签数据,建立数据集。后续生成对抗网络分析主要为图像分析,为保证后续分析流畅,建立数据集时分别建立图像与坐标矩阵两种形式的数据集,且能通过坐标变换程序相互转化。数据集80%的数据作为训练集,用于训练生成对抗网络的模型参数,20%的数据作为测试集,用于测试生成对抗网络的性能。

在一个实施例中,搭建适用于生成网壳结构的最不利缺陷模态的生成对抗网络模型。本发明中,生成网络选择卷积神经网络进行图像生成。生成网络的主要作用是根据原有的网壳结构模型的特征参数,随机生成一系列新的网壳结构的初始几何缺陷图像,从而达成生成网壳结构最不利缺陷模态的目的。

生成网络包含卷积层,汇聚层和全连接层三部分。

(3-1)卷积层

卷积层的作用是提取一个局部区域的特征,不同的卷积核相当于不同的特征提取器。图像处理中常采用二维卷积的方式,先将图像转化为二维矩阵,然后进行卷积运算。对于一个图像X∈R

其中i,j为图像矩阵的行、列索引。

图像在经过卷积操作后得到结果称为特征映射,每个特征映射可以作为一类抽取的图像特征。如图2所示,为了计算输出特征映射Y

Y

其中W

卷积神经网络中常使用ReLU函数作为激活函数:

(3-2)汇聚层

汇聚层的作用是进行特征选择,降低特征数量,并从而减少参数数量,降低特征维数,避免过拟合。假设汇聚层的输入特征映射组为X

常用的汇聚函数有最大汇聚和平均汇聚两种:

最大汇聚一般是取一个区域内所有神经元的最大值,即:

其中x

平均汇聚一般是取区域内所有神经元的平均值,即:

对每一个输入特征映射X

(3-3)生成网络设计

如图3所示,生成网络由卷积层、汇聚层、全连接层交叉堆叠而成。全连接层的作用则是对提取的特征进行非线性组合以得到输出,即全连接层本身不被期望具有特征提取能力,而是试图利用现有的高阶特征完成学习目标。一个卷积块为连续A个卷积层和B个汇聚层(A为2-5,B为0或1)。生成网络中堆叠C连续的卷积块,然后在后面接着D个全连接层(C的取值区间比较大;为1-100或更大;D为0-2)。生成网络输入一系列网壳结构的特征参数绘制成的图像,最终生成一系列网壳结构的初始几何缺陷图像,与实际的初始几何缺陷图像一起输入判别网络进行分析。

(3-4)判别网络

判别网络的目标是区分出一个样本x是来自于真实分布p

判别网络的输出结果为样本x属于真实数据分布的概率,即:

p(y=1|x)=D(x;φ)

(3-5)生成对抗网络

如图4所示,生成对抗网络通过对抗训练的方式来使得生成网络产生的样本服从真实数据分布,从而获得真实的数据结果。当判别网络无法判断出一个样本的来源,那么就等价于生成网络可以生成符合真实数据分布的样本。

对于给定的样本(x,y),判别网络的目标函数为最小化交叉熵,即最大化对数似然。

min

生成网络的目标函数和判别网络相反,为:

max

最终得到的生成对抗网络目标函数为:

min

和单目标的优化任务相比,生成对抗网络的两个网络的优化目标刚好相反,因此采用单目标对生成对抗网络进行训练难度较大,且不稳定。实际训练通常分为两步:

第一步针对判别网络进行训练,目标函数为:

max

第二步针对生成网络进行训练,目标函数为:

min

在一个实施例中,训练生成对抗网络模型参数,训练目标主要为生成对抗网络中的权重和偏置,训练时在所有参数上用梯度下降法,使深度学习网络模型在训练集上的损失函数最小,然后反向传播对所有参数更新推导。在卷积神经网络中,梯度主要通过卷积层每一层的误差项δ进行反向传播,并进一步计算每层参数的梯度。

(4-1)参数梯度计算

在生成网络中,主要有两种不同功能的神经层:卷积层和汇聚层。参数为卷积核以及偏置,因此只需要计算卷积层中参数的梯度。

对第n层卷积层进行分析,第n-1层的输入特征映射为X

其中W

损失函数关于第n层的卷积核W

其中

同理可得损失函数关于第n层的第m个偏置的b

在卷积网络中,每层参数的梯度依赖其所在层的误差项δ

(4-2)误差项计算

卷积层和汇聚层中,因误差项的计算有所不同,需分别计算。

当第n+1层为汇聚层时,汇聚层是下采样操作,n+1层的每个神经元的误差项δ对应于第n层的相应特征映射的一个区域。根据链式法则,第n层的特征映射的误差项可通过第n+1层对应的特征映射的误差项进行上采用操作,具体计算公式为:

其中f′

当第n+1层为卷积层时,假设特征映射净输入Z

其中W

第n层的第m个特征映射的误差项δ

(4-3)生成对抗网络训练流程

训练集数据被用于生成对抗网络的训练,验证集数据用于反映模型训练效果,测试集数据用于测试模型泛化能力和评估模型生成结果的精度。每次迭代时,判别网络更新K次,而生成网络更新1次,即保证判别网络足够强才能开始训练生成网络。训练过程如下:

(1)设置生成网络G和判别网络D两个网络的初始参数。

(2)将样本数据及定义的噪声输入生成网络G,生成网络G生成样本,输入判别网络D。固定生成网络G,训练判别网络D,使其尽可能区分真假。

(3)循环更新k次判别网络D之后,更新1次生成网络G,使判别网络尽可能区分不了真假。重复训练。

多次更新迭代后,生成对抗网络达到纳什平衡。理想状态下,判别网络D无法区分图像是来自真实的训练样本集合,还是来自生成网络G生成的样本,此时判别网络D的判别概率为0.5,完成训练。

在一个实施例中,如图5和6所示,步骤4中由生成网络生成网壳结构的最不利缺陷模态后,将图像转化为坐标矩阵的形式与网壳结构的特征参数输入ANSYS有限元软件中,对网壳结构进行重新建模并进行非线性分析,确定网壳结构的极限承载力。具体操作如下:

第一步,根据步骤2的图像与坐标矩阵转换程序,将步骤4的生成结果转换成坐标矩阵。

第二部,将坐标矩阵与网壳结构的特征参数输入ANSYS有限元软件,进行重新建模。

第三步,进行非线性计算分析,确定网壳结构的非线性承载力,并与步骤2的计算结果对比分析。

本发明基于生成对抗网络模型,由生成网络和判别网络组成。生成网络分析输入层网壳结构的特征参数与输出层网壳结构的最不利几何缺陷模态之间的特征映射关系,以较为准确地生成网壳结构的最不利几何缺陷模态。判别网络用于鉴别有限元给出的、生成网络生成的网壳结构最不利几何缺陷,优化生成网络的参数,提升生成网络的网壳最不利缺陷生成能力,并结合ANSYS有限元软件计算,验证该最不利缺陷模态创建方法的有效性和准确性。

本发明基于深度学习的网壳结构最不利缺陷模态创建方法,优势在于深度学习是一种数据驱动性分析方法,计算速度快、不依赖经验、便于后期软件开发。且深度学习具有强大的数值分析能力,能够建立网壳结构多个参数和最不利几何缺陷的关系,计算结果精度高。本发明使用的生成对抗网络是以图像为基础的建模方法,生成结果直观。

本发明方案所公开的技术手段不仅限于上述技术手段所公开的技术手段,还包括由以上技术特征任意组合所组成的技术方案。

本发明还提供一种基于深度学习的网壳结构最不利缺陷模态创建设备,包括:

存储器,用于存储计算机程序;

处理器,用于执行所述计算机程序时实现如上所述的基于深度学习的网壳结构最不利缺陷模态创建方法的步骤。

本发明还提供一种计算机可读存储介质,所述计算可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的基于深度学习的网壳结构最不利缺陷模态创建方法的步骤。该计算机可读存储介质可以包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。

本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。

以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可理解想到的变换或替换,都应涵盖在本发明的包含范围之内,因此,本发明的保护范围应该以权利要求书的保护范围为准。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号