首页> 中国专利> 一种多径和高斯色噪声环境下的稀疏角度估计方法

一种多径和高斯色噪声环境下的稀疏角度估计方法

摘要

本发明公开了一种多径和高斯色噪声环境下的稀疏角度估计方法,本首先构造四阶累积量函数,消除色噪声的影响;利用接收信号的累积量表现出范德蒙形式的特点,构造满秩的Toeplitz矩阵,消除多径造成的信源相干问题的影响;然后对Toeplitz矩阵进行SVD分解,用于降维并得到加权系数;构造稀疏冗余字典、稀疏矩阵、加权矩阵;最后以约束稀疏矩阵的零范数为目标,建立稀疏角度优化问题,并将其转化为二阶锥问题,使用CVX优化工具包求解角度信息。本发明建立稀疏重建Toeplitz矩阵的优化问题,获得稀疏行索引对应的角度即为入射信号的角度,达到了在低信噪比和低快拍数下能够估计出来波信号方向的目的。

著录项

  • 公开/公告号CN114879133A

    专利类型发明专利

  • 公开/公告日2022-08-09

    原文格式PDF

  • 申请/专利权人 西安电子科技大学;

    申请/专利号CN202210453235.0

  • 申请日2022-04-27

  • 分类号G01S3/14(2006.01);G01S7/02(2006.01);G06F17/16(2006.01);

  • 代理机构西安弘理专利事务所 61214;

  • 代理人徐瑶

  • 地址 710071 陕西省西安市雁塔区太白南路2号

  • 入库时间 2023-06-19 16:19:08

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-08-26

    实质审查的生效 IPC(主分类):G01S 3/14 专利申请号:2022104532350 申请日:20220427

    实质审查的生效

  • 2022-08-09

    公开

    发明专利申请公布

说明书

技术领域

本发明属于阵列信号处理技术领域,具体涉及一种多径和高斯色噪声环境下的稀疏角度估计方法。

背景技术

现代通信中通过天线阵列来传递信息,而目标信号的角度信息是从阵列接收信号中所要提取的重要参数之一,因此波达方向(Direction of Arrival,DOA)估计技术是阵列信号处理领域的重要研究课题,广泛地应用于雷达、水下通信、无线通信等领域。

实际阵列接收到的信号会受到各种各样的干扰,使得从干扰和噪声中提取出有用信号的角度信息面临着严峻的挑战。在信号传播环境中,由于多径传播,到达接收机的信号呈现出相干性,导致信号协方差矩阵缺秩,无法正确分辨出多个来波信号,进而角度估计失败。传统的空间平滑算法通过将阵列分割为子阵,恢复出满秩的协方差矩阵,但是同时也牺牲了阵列孔径与自由度,对估计性能造成了损失。此外,实际中存在的噪声很大概率上是色噪声,且噪声之间是相关的。传统的角度估计算法只适合于接收到信号噪声为高斯白噪声的理想环境,当在色噪声环境下继续使用传统角度估计算法时,就会偏离正确的结果,因此色噪声下DOA估计也是个不容忽视的问题。目前针对该问题,已有的解决方案是利用高阶累积量和构造Toeplitz矩阵消除其不利影响后,使用多重信号分类(Multiple SignalClassification,MUSIC)算法来搜索最大谱峰值来估计出角度,但是该方案在低信噪比的条件下性能欠佳。

实际信号的传播环境是十分恶劣的,经过路径损耗后,达到接收机的功率可能是十分微小的,因此需要考虑低信噪比环境下的角度估计精度的问题。基于此,考虑如何在多径丰富、高斯色噪声存在的复杂环境时,对阵列接收信号进行处理得到正确目标角度信息将具有重要意义。

针对多径和高斯色噪声环境对DOA估计造成的问题,现有的技术方案是利用高阶累积量和构造Toeplitz矩阵消除其不利影响后,使用MUSIC算法搜索最大谱峰值来估计出角度。但是该方案在低信噪比和较少快拍数下的性能不佳,而稀疏角度估计算法适合低信噪比和较少快拍数的场景。

发明内容

本发明的目的是提供一种多径和高斯色噪声环境下的稀疏角度估计方法,考虑了不利传输环境对DOA估计造成的影响,建立稀疏重建Toeplitz矩阵的优化问题,获得稀疏行索引对应的角度即为入射信号的角度,达到了在低信噪比和低快拍数下能够估计出来波信号方向的目的。

本发明所采用的技术方案是,一种多径和高斯色噪声环境下的稀疏角度估计方法,具体按照以下步骤实施:

步骤1、构造四阶累积量函数,消除色噪声的影响;

步骤2、利用接收信号的累积量表现出范德蒙形式的特点,构造满秩的Toeplitz矩阵,消除多径造成的信源相干问题的影响;

步骤3、对Toeplitz矩阵进行SVD分解,用于降维并得到加权系数;

步骤4、构造稀疏冗余字典、稀疏矩阵、加权矩阵;

步骤5、以约束稀疏矩阵的零范数为目标,建立稀疏角度优化问题,并将其转化为二阶锥问题,使用CVX优化工具包求解角度信息。

本发明的特点还在于,

步骤1如下:

步骤1.1、假设空间中有一个M元均匀线性阵列,阵元间距d=λ/2,其中λ为信号波长,K个远场窄带信号入射到阵列上,设入射信号的到达角为θ

X(t)=AS(t)+N(t) (1)

其中A=[a(θ

步骤1.2、当接收信号之间相干时,有

X(t)=AS(t)+N(t)=AΓs

其中S(t)=Γs

步骤1.3、使用高阶累积量对雷达阵列或无线通信阵列中各阵元的接收信号进行处理,第一个阵元接收的数据为:

其中n

第m个阵元的接收数据为:

其中n

步骤1.4、定义如下的四阶累积量函数:

其中cum(·)表示信号的累积量操作,x

步骤2如下:

Toeplitz矩阵一个包含阵列导向矢量的满秩矩阵,所述Toeplitz矩阵为:

其中,Β是K×K维对角矩阵,且有

步骤3如下:

理想情况下,高阶累积量的快拍数是无限长的,实际中只能取有限快拍去近似高阶累积量:

其中N是快拍数;x

对Toeplitz矩阵C进行奇异值(Singular Value Decomposition,SVD)分解操作,得到C=UΣV

C

其中

步骤4如下:

步骤4.1、将空间划分为L个网格,这些网格组成了可能的到达角方向的集合Θ={θ

步骤4.2、引入稀疏矩阵T,得到稀疏矩阵T的非零行索引,从到达角方向的集合里找出索引对应的角度就可以估计出波达角方向,结合冗余字典,降维矩阵可以稀疏重构为

用l

其中

其中||·||

步骤4.3、冗余字典中包含对实际来波信号对应的导向矢量

定义矩阵

矩阵T的加权稀疏系数表示为:

则加权矩阵表示为W

步骤5如下:

优化问题变为:

其中μ是正则化参数,μ的值越大,矩阵T越稀疏,

上述优化问题转化为如下所示的二阶锥规划进行求解:

其中Z是

本发明的有益效果是,一种多径和高斯色噪声环境下的稀疏角度估计方法,实际信号的传播环境是十分恶劣的,经过路径损耗后,达到接收机的功率可能是十分微小的,因此需要考虑低信噪比环境下的角度估计精度的问题;为了减轻接收机的负担的数据处理复杂度,采样数据的快拍数应尽可能小。本发明将稀疏角度估计算法运用于解决多径和高斯色噪声环境的角度估计问题,建立稀疏重建Toeplitz矩阵的优化问题,获得稀疏行索引对应的角度即为入射信号的角度,在低信噪比和较少快拍数的条件下取得了比现有技术方案更好的估计结果。

附图说明

图1为本发明实施例一种多径和高斯色噪声环境下的稀疏角度估计方法的流程图;

图2为本发明实施例中均匀阵列接收信号示意图;

图3为本发明验证实施例中的算法与其他算法在低信噪比和较少快拍数下的效果对比示意图;

图4为本发明验证实施例中的算法与其他算法在高信噪比和较多快拍数下的效果对比示意图;

图5为本发明验证实施例中的算法随信噪比变化的效果示意图。

具体实施方式

下面结合附图和具体实施方式对本发明进行详细说明。

本发明一种多径和高斯色噪声环境下的稀疏角度估计方法,流程图如图1所示,具体按照以下步骤实施:

步骤1、构造四阶累积量函数,消除色噪声的影响;

步骤1如下:

步骤1.1、假设空间中有一个M元均匀线性阵列,阵元间距d=λ/2,其中λ为信号波长,K个远场窄带信号入射到阵列上,设入射信号的到达角为θ

X(t)=AS(t)+N(t) (1)

其中A=[a(θ

步骤1.2、当接收信号之间相干时,有

X(t)=AS(t)+N(t)=AΓs

其中S(t)=Γs

步骤1.3、为了抵抗高斯色噪声,利用高阶累积量本身具有抑制高斯色噪声的特性,使用高阶累积量对雷达阵列或无线通信阵列中各阵元的接收信号进行处理,第一个阵元接收的数据为:

其中n

第m个阵元的接收数据为:

其中n

步骤1.4、定义如下的四阶累积量函数:

其中cum(·)表示信号的累积量操作,x

步骤2、利用接收信号的累积量表现出范德蒙形式的特点,构造满秩的Toeplitz矩阵,消除多径造成的信源相干问题的影响;

步骤2如下:

范德蒙矩阵与其共轭转置的乘积为Toeplitz矩阵。Toeplitz矩阵一个包含阵列导向矢量的满秩矩阵,从而实现了解相干处理,所述Toeplitz矩阵为:

其中,Β是K×K维对角矩阵,且有

步骤3、对Toeplitz矩阵进行SVD分解,用于降维并得到加权系数;

步骤3如下:

从公式(6)可以看出,矩阵C为满秩矩阵,消除了信号之间的相干性。需要注意的是,理想情况下,高阶累积量的快拍数是无限长的,实际中只能取有限快拍去近似高阶累积量:

其中N是快拍数;x

实际信号的传播环境是十分恶劣的,经过路径损耗后,达到接收机的功率可能是十分微小的,因此需要考虑低信噪比环境下的角度估计精度的问题,而稀疏角度估计算法在低信噪比下性能表现良好,因此本发明基于公式(6)提出了一种稀疏角度估计算法。

对Toeplitz矩阵C进行SVD分解操作,得到C=UΣV

C

其中

步骤4、构造稀疏冗余字典、稀疏矩阵、加权矩阵;

步骤4如下:

步骤4.1、目标信号仅分布在空间内的某些位置,因此在空域内具有稀疏性,从稀疏空间中找到信号功率最大的方向,即为目标信号的角度。将空间划分为L个网格,这些网格组成了可能的到达角方向的集合Θ={θ

步骤4.2、引入稀疏矩阵T,得到稀疏矩阵T的非零行索引,从到达角方向的集合里找出索引对应的角度就可以估计出波达角方向,结合冗余字典,降维矩阵可以稀疏重构为

稀疏矩阵中含有大量的冗余信息,关键在于找到非零行的位置,这个优化问题可以进一步转化为最小化非零行的个数,一般是用l

其中

上述优化问题转化为最小化矩阵T非零行的l

其中||·||

步骤4.3、为了能够使得l

定义矩阵

矩阵T的加权稀疏系数表示为:

则加权矩阵表示为W

根据导向矢量与噪声子空间的正交性,则

步骤5、以约束稀疏矩阵的零范数为目标,建立稀疏角度优化问题,并将其转化为二阶锥问题,使用CVX优化工具包求解角度信息。

步骤5如下:

优化问题变为:

其中μ是正则化参数,用来限制矩阵T中行的稀疏性,μ的值越大,矩阵T越稀疏,因为噪声子空间的原因,加权系数起到了惩罚信号的作用,即大的权值对零行的惩罚力度大,小的权值对非零行的惩罚力度小。

上述优化问题转化为如下所示的二阶锥规划进行求解:

其中Z是

对本发明实施例的方法进行了验证。假设均匀线性阵列的阵元数为6,有2个来波信号入射到阵列上,入射角度分别为24°、30°,信噪比为5dB,快拍数为200,设置噪声的是高斯色噪声,由高斯白噪声经过二阶滤波器产生。

如图3所示,本发明采用的对比方法为:(1)l

如图3所示,本发明所提出的算法在低信噪比和低快拍下,空间功率(Power)谱峰比较尖锐,可以清晰地分辨出两个入射信号角度(Angle),说明本发明提出的算法可以有效地抵抗相干信源和高斯色噪声,而其他算法只能分辨出一个角度。与基于四阶累积量重构Toeplitz矩阵的MUSIC算法相比,本发明所提出的算法因为使用了稀疏角度估计算法,所以角度分辨率有所提升。基于四阶累积量角度估计算法虽然可以抑制色噪声,但是不具有解信源相干的能力,所以估计性能较差;基于l

其他仿真参数不变,图4仿真了信噪比为10dB时,快拍数为500时,不同算法的性能对比。从图4中可以看出,本发明提出的算法具有良好的估计性能,可以清晰地分辨出两个信源。增大信噪比和快拍数后,基于四阶累积量重构Toeplitz矩阵的MUSIC算法也可以正确估计出角度,而l

如图5所示,比较了基于四阶累积量重构Toeplitz矩阵的MUSIC算法和本发明所提算法随不同信噪比(Signal to Noise Ratio,SNR)变化的均方误差(Root Mean SquareError,RMSE)曲线。从图中可以看出,随着信噪比的增加,两种算法的均方误差都有所下降;但是本发明所提算法的均方误差始终小于基于四阶累积量重构Toeplitz矩阵的MUSIC算法,表明所提算法有较好的估计性能。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号