首页> 中国专利> 一种抗羊口疮和绵羊痘的重组DNA疫苗及其重组质粒

一种抗羊口疮和绵羊痘的重组DNA疫苗及其重组质粒

摘要

本发明提供了一种重组DNA疫苗及其重组质粒,DNA疫苗重组质粒包括抗原编码序列和质粒载体,所述抗原编码序列包括串联的羊口疮抗原编码序列和绵羊痘抗原编码序列,所述羊口疮抗原和绵羊痘抗原表达为独立的抗原蛋白。本发明提供了一种羊口疮病毒基因和绵羊痘病毒基因的双基因重组DNA疫苗的构建,以及小鼠免疫效果分析。本发明选择羊口疮病毒B2L(011)基因与绵羊痘病毒P32基因,用自剪切肽P2A将两个基因串联,自剪切肽P2A在真核细胞内发生自剪切,使两个抗原蛋白在真核表达载体pcDNA3.1(+)上独立表达。本发明所制备的重组DNA疫苗在免疫小鼠后也产生了较好的免疫效果,可作为候选疫苗的参考。

著录项

  • 公开/公告号CN114807225A

    专利类型发明专利

  • 公开/公告日2022-07-29

    原文格式PDF

  • 申请/专利权人 吉林大学;

    申请/专利号CN202210448759.0

  • 申请日2022-04-26

  • 分类号C12N15/85;A61K39/275;A61P31/20;

  • 代理机构天津市尚文知识产权代理有限公司;

  • 代理人黄静

  • 地址 130012 吉林省长春市前进大街2699号

  • 入库时间 2023-06-19 16:08:01

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-07-29

    公开

    发明专利申请公布

说明书

技术领域

本发明属于动物基因工程技术领域,具体涉及一种羊口疮病毒基因和绵羊痘病毒基因的双基因重组DNA疫苗的制备方法和免疫小鼠后的效果评价。

背景技术

羊口疮病毒(又名羊传染性脓疱病毒,Orf virus,ORFV)属于副痘病毒属,双股DNA病毒,是一种具有嗜上皮性的人畜共患病病毒,主要感染山羊和绵羊,给养羊业造成巨大的经济损失;其病变局限于皮肤黏膜和口腔,会形成红斑或结痂,病毒粒子可存在于结痂内,并随着结痂脱落而掉落到环境中,再次感染宿主。该病毒具有耐干燥的特性,因此羊群中一旦感染会反复发作,难以根除。

绵羊痘病毒(Sheep pox virus,SPPV)是羊痘病毒属中有囊膜的双股DNA病毒,是一种急性接触性传染病病毒。主要感染绵羊,发病率可达100%,成年羊致死率达50%,而羔羊的致死率可高达100%,绵羊痘病阻碍了珍贵品种的引进和养羊业的规模化发展。该病好发于无被毛区域,如口腔、鼻腔、乳房、尾巴腹侧等,会由最初的红斑发展成丘疹,严重时可蔓延全身,形成隆起的球状结节。

羊口疮和绵羊痘二者临床症状具有一定的相似性,因鉴别诊断错误而影响防控会对养羊业造成不可估量的经济损失。目前市面上仍旧没有一种可以推广的治疗药物或疫苗,因此,研制一种能同时预防这两种疫病,又易于生产、运输和保存的二联疫苗具有很大的意义。

DNA疫苗属于基因工程疫苗,当携带抗原基因的DNA载体进入细胞、诱导抗原表达后,抗原被主要组织相容性复合体(MHC)呈递后被T细胞识别,从而激发宿主的免疫应答;DNA疫苗具有易于制造、稳定性好、无需冷链和引起宿主适当的免疫反应等诸多优点,易于推广。

抗原蛋白的选择对DNA疫苗效果起关键作用,本发明选择了羊口疮的B2L(011)基因和绵羊痘的P32基因。羊口疮病毒的B2L基因大小为1137bp。已有实验证明,将B2L基因与流感基因疫苗共同接种小鼠,可以显著提高对小鼠的保护力,佐证了羊口疮的B2L蛋白是一种可以提高免疫原性的蛋白。绵羊痘P32基因大小为972bp,可编码P32蛋白,该蛋白早已应用于ELISA法来检测羊和牛血清中的羊痘抗体,P32基因也是诊断试剂和疫苗的热门靶点。以上研究都表明,羊口疮病毒的B2L基因与绵羊痘病毒的P32基因表达的蛋白产物具有良好免疫原性。

发明内容

本发明公开一种羊口疮病毒基因和绵羊痘病毒基因的双基因重组DNA疫苗的构建,以及小鼠免疫效果分析。本发明选择羊口疮病毒B2L基因与绵羊痘病毒P32基因,根据相关文献报道,其对应编码的B2L蛋白与P32蛋白均具有良好的免疫原性,因此使用自剪切肽P2A的DNA片段将两个基因串联,克隆至真核表达载体,转染真核细胞后进行Western Blot分析,结果表明,翻译后的多肽在P2A处发生了自剪切,使B2L及P32两种蛋白在真核细胞内独立表达。本发明所制备的重组质粒在免疫小鼠后也产生了较好的免疫效果,可作为候选疫苗的参考。

本发明提供了一种重组DNA疫苗,包括抗原编码序列和质粒载体,所述抗原编码序列包括串联的羊口疮抗原编码序列和绵羊痘抗原编码序列,所述羊口疮抗原和绵羊痘抗原表达为独立的抗原蛋白。

优选的是,所述抗原编码序列包括自剪切多肽编码序列,表达过程中,所述羊口疮抗原编码序列和绵羊痘抗原编码序列表达的抗原蛋白通过自剪切多肽分开。

上述任一项优选的是,所述自剪切多肽为P2A。在现有技术中常用的基因链接元件包括P2A、T2A、F2A、E2A几种自剪切多肽。在本发明的研究过程中发现,抗原基因不同、自剪切肽的选择不同,剪切效率也不同。本发明优选P2A作为自剪切肽,在B2L-P2A-P32表达过程中,其剪切率最高,而T2A、E2A和F2A均较低,F2A的切割效率较低。未切割成功的蛋白B2L基因和P32基因融合表达为一个融合蛋白,由于不能形成正确的三维结构,不能得到正确的抗原决定簇,而会使该重组质粒不适于作为DNA疫苗使用。

(2)P2A通常具有最高的切割效率(在某些情况下接近100%);接下来是T2A,其次是E2A和F2A。。

上述任一项优选的是,所述羊口疮抗原编码序列为羊口疮B2L基因片段。

上述任一项优选的是,所述羊口疮B2L基因片段包含如Seq ID NO:1所示的核苷酸序列。

上述任一项优选的是,所述羊口疮B2L基因片段为Seq ID NO:1所示的核苷酸序列。

上述任一项优选的是,所述绵羊痘抗原编码序列为羊痘P32基因片段。

上述任一项优选的是,所述羊痘P32基因片段包含如Seq ID NO:2所示的核苷酸序列中的第1到第843个碱基。优选的,所述羊痘P32基因片段包含如Seq ID NO:2所示的核苷酸序列中的第1到第843+n个碱基,其中n=1~129。

上述任一项优选的是,所述羊痘P32基因片段为Seq ID NO:2所示的核苷酸序列。

上述任一项优选的是,所述为pcDNA3.1(+)或pVAX1。优选为,pcDNA3.1(+)。

本发明还提供了上述的重组质粒在制备抗羊口疮和绵羊痘联合DNA疫苗中的应用。

本发明的有益效果在于提供一种预防羊口疮病毒和绵羊痘病毒的双基因重组DNA疫苗的制备方法。

本发明采用自剪切多肽P2A的DNA序列将羊口疮B2L基因与绵羊痘P32基因串联,翻译后的多肽在P2A处可发生自剪切,从而使两个目的蛋白在真核细胞内独立表达。

本实验采用的技术方案包括以下步骤:

1)目的基因的扩增:B2L基因与P32基因;

2)构建真核重组质粒;

3)真核重组质粒的表达;

4)建立免疫程序及评估小鼠免疫效果。

羊口疮病毒是中国吉林流行株(Orf virus,Orf virus strain SY17株),其全长序列参见GenBank:MG712417.1),本发明中羊口疮B2L基因的核苷酸序列如Seq ID NO:1所示。所述SY17株为现有技术中已公开的毒株(Zhong J#,Guan J#,Zhou Y,Cui S,Wang Z,Zhou S,Xu M,Wei X,Gao Y,Zhai S,Song D,He W,Gao F,Zhao K*.Genomiccharacterization of two Orf virus isolates from Jilin province in China.VirusGenes,2019,55:490–501.),公众可通过与作者共享的方式获得。

绵羊痘病毒(Sheep pox virus,SPPV),其全长序列参见GenBank:AY077834.1,绵羊痘P32基因和核苷酸序列如Seq ID NO:2所示。绵羊痘病毒分离株为已报道病毒,公众可通过与作者共享的方式获得其毒株。

重组质粒可以诱导小鼠产生较高免疫水平,可作为同时预防羊口疮病与绵羊痘病候选疫苗的参考。

附图说明

图1为本申请优选实施例1中FLAG-B2L-P2A基因PCR扩增结果。

图2为本申请优选实施例1中P2A-P32-MYC基因PCR扩增结果。

图3为本申请优选实施例1中FLAG-B2L-P2A-P32-MYC基因PCR扩增结果。

图4为本申请优选实施例1中B2L-P2A-P32基因PCR扩增结果。

图5为本申请优选实施例2中pcDNA3.1-FLAG-B2L-P2A-P32-MYC重组质粒酶切鉴定图谱。

图6为本申请优选实施例2中pcDNA3.1-B2L-P2A-P32重组质粒酶切鉴定图谱。

图7为本申请优选实施例3中pcDNA3.1-FLAG-B2L-P2A-P32-MYC重组质粒转染真核细胞后的Western Blot多肽自剪切鉴定结果。

图8为本申请优选实施例4中免疫后小鼠血清中的特异性抗体水平。

图9为本申请优选实施例4中免疫后小鼠血清中的免疫球蛋白IgG1、IgG2a抗体的水平检测。

图10为本申请优选实施例4中免疫后小鼠血清中的细胞因子IL-4和IFN-γ的水平检测。

图11对比例1中不同抗原序列对切割效率的影响对比。

具体实施方式

本发明通过以下实施例进行更加清晰、完整的描述,但所描述的实例仅是本发明一部分实施例,并非全部。所述实施例为帮助理解本发明,不应依此来局限本发明的保护范围。

实施例中所用材料:引物片段均由长春库美生物有限公司合成,Analytik Jena公司的innuPREP Virus DNA Kit,倍沃医学科技公司DNA Gel/PCR Purification MiniprepKit琼脂糖凝胶DNA/PCR产物小量回收试剂盒,全式金

本发明实施例中所用方法无特别说明均为常规方法。

本发明中其他所涉及的载体、试剂如无特殊说明均为商业化产品。

实施例1目的基因的扩增

1.设计引物

第一个重组质粒:pcDNA3.1-FLAG-B2L-P2A-P32-MYC

以ORFV分离株的ORFV B2L基因区域为模板,设计引物Primer 1与Primer 2,引物Primer 1引入部分载体序列、BamH I酶切位点、Kozak序列与标签FLAG序列,引物Primer 2引入自剪切肽P2A前40bp DNA序列,B2L基因去终止密码子,扩增后预期获得1227bp的FLAG-B2L-P2A片段;

Primer 1:如Seq ID NO:3所示;Primer 2:如Seq ID NO:4所示。

以SPPV分离株的P32基因区域为模板,设计引物Primer 3与Primer 4,引物Primer3引入自剪切肽P2A后40bp DNA序列,引物Primer 4引入部分载体序列、Apa I酶切位点与标签MYC序列,P32基因去终止密码子,扩增后预期获得1059bp的P2A-P32-MYC片段;

Primer 3:如Seq ID NO:5所示;Primer 4:如Seq ID NO:6所示;

以FLAG-B2L-P2A片段和P2A-P32-MYC片段为模板,使用Primer 1和Primer 4,进行重叠延伸PCR,扩增后预期获得2263bp的FLAG-B2L-P2A-P32-MYC片段。

第二个重组质粒:pcDNA3.1-B2L-P2A-P32

以FLAG-B2L-P2A-P32-MYC片段为模板,设计引物Primer 5与Primer 6,引物Primer 5引入部分载体序列、Hind III酶切位点和Kozak序列,引物Primer 6引入部分载体序列、BamH I酶切位点和P32基因的终止密码子,扩增后预期获得2209bp的B2L-P2A-P32片段;

Primer 5:如Seq ID NO:7所示;Primer 6:如Seq ID NO:8所示。

2.模板的制备

羊口疮病毒液与绵羊痘病毒液均由本实验室保存,均为现有技术记载的分离株,公众可通过与作者共享的方式获得。根据Analytik Jena公司的innuPREP Virus DNA Kit说明书提取病毒DNA。

3.目的基因的制备

(1)扩增目的基因FLAG-B2L-P2A-P32-MYC

其中FLAG、MYC为标签,用于通过Western Blot技术对B2L和P32蛋白的表达进行鉴定,FLAG、MYC标签均为现有技术中的标签,其核苷酸编码序列在此不进行赘述。

PCR反应体系(25μL):8.5μL ddH

PCR反应程序:98℃2min、98℃10s、55℃10s、72℃10s,共34个循环。

PCR反应体系(25μL):8.5μL ddH

PCR反应程序:98℃2min、98℃10s、55℃10s、72℃10s,共34个循环。

目的基因回收:1%琼脂糖凝胶电泳鉴定,结果如图1、2所示(图1中,M:DL2000 DNAMarker 1:FLAG-B2L-P2A的PCR产物2:阴性对照;图2中,M:DL2000 DNA Marker 1:P2A-P32-MYC的PCR产物2:阴性对照),在1227bp和1059bp处得到目的条带,与预期结果相符。根据倍沃医学科技公司胶回收试剂盒说明书回收PCR产物,得到FLAG-B2L-P2A片段与P2A-P32-MYC片段,-20℃保存。

重叠延伸PCR反应体系(25μL):6.5μL ddH

PCR反应程序:98℃2min、98℃10s、55℃10s、72℃10s,共34个循环。

目的基因回收:1%琼脂糖凝胶电泳鉴定,结果如图3所示(图3中,M:DL2000 DNAMarker 1:FLAG-B2L-P2A-P32-MYC的PCR产物2:阴性对照),在2263bp处得到目的条带,与预期结果相符。胶回收后得到FLAG-B2L-P2A-P32-MYC片段,-20℃保存。

(2)扩增目的基因B2L-P2A-P32

B2L-P2A-P32的核苷酸序列如Seq ID NO:9所示。

PCR反应体系(25μL):8.5μL ddH

PCR反应程序:98℃2min、98℃10s、55℃10s、72℃10s,共34个循环。

目的基因回收:1%琼脂糖凝胶电泳鉴定,结果如图4所示(图4中,M:DL 2000DNAMarker 1:B2L-P2A-P32的PCR产物2:阴性对照),在2209bp处得到目的条带,与预期结果相符。胶回收PCR产物,得到B2L-P2A-P32片段,-20℃保存。

4.载体的制备

载体双酶切:用限制性内切酶BamH I和Apa I对pcDNA3.1(+)质粒进行双酶切,在37℃水浴锅中酶切反应1h,酶切产物经1%琼脂糖凝胶电泳鉴定后回收;用限制性内切酶Hind III和BamH I对pcDNA3.1(+)质粒进行双酶切,在37℃水浴锅中酶切反应1h,酶切产物经1%琼脂糖凝胶电泳鉴定后回收。

实施例2构建真核重组质粒

1.连接:

使用全式金公司的无缝克隆试剂盒,将FLAG-B2L-P2A-P32-MYC片段连接到BamHI、Apa I双酶切的pcDNA3.1(+)载体上,命名为pcDNA3.1-FLAG-B2L-P2A-P32-MYC重组质粒;将B2L-P2A-P32片段连接到Hind III、BamH I双酶切pcDNA3.1(+)载体上,命名为pcDNA3.1-B2L-P2A-P32重组质粒。具体操作步骤如下:

连接体系(10μL体系):5μL 2×Basic Assembly Mix、3μL PCR产物、2μL双酶切pcDNA3.1(+)载体,轻轻混匀,50℃水浴锅反应15min,冰上冷却数秒,-20℃保存。

2.转化

取连接后的产物5μL加入50μL E.coli DH5α感受态细胞中,轻轻混匀,冰上放置30min,42℃水浴中热激30s,之后马上转至冰上冷却2min,加入450μL LB培养基,37℃摇床中培养1h,取200μL细胞均匀地涂在氨苄固体培养基上,37℃培养箱中培养12h。

3.阳性克隆检测

挑取阳性单个菌落为模板做菌液PCR鉴定,PCR阳性菌液扩大培养后提取质粒做双酶切鉴定,可见5356bp的大片段和2235bp的小片段与5410bp的大片段和2181bp的小片段,结果如图5、6所示(图5中,泳道从左到右分别为:M:DL15000 DNA Marker 1:BamH I和Apa I双酶切pcDNA3.1-FLAG-B2L-P2A-P32-MYC质粒2:未酶切pcDNA3.1-FLAG-B2L-P2A-P32-MYC质粒3:BamH I单酶切pcDNA3.1-FLAG-B2L-P2A-P32-MYC质粒4:Apa I单酶切pcDNA3.1-FLAG-B2L-P2A-P32-MYC质粒;图6中,泳道从左到右分别为:M:DL15000 DNA Marker 1:HindIII和BamH I双酶切pcDNA3.1-B2L-P2A-P32重组质粒2:未酶切pcDNA3.1-B2L-P2A-P32重组质粒3:Hind III单酶切pcDNA3.1-B2L-P2A-P32重组质粒4:BamH I单酶切pcDNA3.1-B2L-P2A-P32重组质粒)。将双酶切鉴定正确的菌液送至上海生工生物公司测序。

经双酶切和测序结果鉴定,成功构建pcDNA3.1-FLAG-B2L-P2A-P32-MYC重组质粒和pcDNA3.1-B2L-P2A-P32重组质粒。

实施例3重组质粒的真核表达

293T细胞用含1%青链霉素和10%胎牛血清的DMEM培养基培养,培养在37℃,5%CO

使用PAGE凝胶快速制备试剂盒(12.5%)配置蛋白胶,取蛋白样品进行电泳,全程恒压120V,PVDF膜转膜,全程恒流300mA;使用5%脱脂奶粉,37℃封闭30min;一抗使用FLAG标签抗体、MYC标签抗体、β-actin内参抗体和GAPDH内参抗体,4℃孵育12h;TBST洗膜,使用对应源性HRP标记的二抗,37℃孵育1h;TBST洗膜,使用美仑飞克特超敏ECL发光液显色与显影仪显影。

结果如图7所示(图7中,图A为使用FLAG标签抗体的Western Blot结果,泳道从左到右分别为:1:pcDNA3.1(+)2:pcDNA3.1-FLAG-B2L-P2A-P32-MYC重组质粒3:293T细胞;图B为使用MYC标签抗体的Western Blot结果,泳道从左到右分别为:1:pcDNA3.1(+)2:pcDNA3.1-FLAG-B2L-P2A-P32-MYC重组质粒3:293T细胞),43kDa处检测到了切割后的FLAG-B2L蛋白;37kDa处检测到了切割后的P32-MYC蛋白,在81kDa处检测到了未切割的FLAG-B2L-P2A-P32-MYC融合蛋白。

以上Western Blot鉴定结果证明,该重组质粒的自剪切肽P2A在真核细胞内发生了自剪切,ORFV B2L基因编码的蛋白与SPPV P32基因编码的蛋白在真核细胞内可以独立表达。

由图7的结果也可以得到,B2L-P2A-P32的切割效率能够达到60%以上。

实施例4建立免疫程序及评估小鼠免疫效果

(一)免疫程序

将42只6-8周龄雌性Balb/c随机分7组,每组6只,具体分组、免疫内容和剂量如表1所示。

表1免疫分组、免疫内容及免疫剂量

免疫方式均为肌肉注射大腿股外侧肌,第0天首次免疫,间隔21天(第3周)加强免疫一次,第35天(第5周)结束免疫。

PBS组注射无菌的PBS;首免的佐剂选择完全弗氏佐剂,二次免疫的佐剂选择不完全弗氏佐剂;佐剂与质粒1:1混合,震荡12h以充分乳化。ORFV与β-丙内酯1:3000充分混合,4℃静置24h,37℃水浴锅水解2h,再加佐剂乳化12h,SPPV灭活及乳化步骤同上。ORFV灭活后为iORFV,SPPV灭活后为iSPPV。图8至10中,佐剂以(A)表示。

(二)血清中的特异性抗体检测

ELISA洗板操作:快速倒扣弃去原液,每孔加200μL PBST,微孔板混匀仪震荡1min。

采用间接ELISA法检测血清中的特异性抗体,包被酶标板时分别使用ORFV病毒液(10

(1)包被:用碳酸盐缓冲液稀释病毒液,每孔取100μL加入ELISA板内,置于微孔板混匀仪震荡30s,密封后于4℃包被12h。

(2)封闭:洗板4次,每孔加入100μL 5%脱脂奶粉,37℃封闭1h。

(3)加一抗:洗板4次,每孔加入100μL倍比稀释的血清,以1:50稀释血清,置于微孔板混匀仪震荡30s,37℃孵育1-2h。

(4)加二抗:洗板4次,每孔加入100μL HRP标记的鼠源二抗(以1:10000稀释),37℃封闭1h。

(5)加底物:洗板5次,每孔加入100μL新鲜配置的显色液,避光孵育15min,每孔加入100μL的终止液。

(6)读取数值:将酶标板置于酶标仪内,在450nm波长处测定OD值,15min内操作完毕。

(7)ELISA结果:如图8所示(图8中,图A为血清中ORFV特异性抗体水平,图B为血清中SPPV特异性抗体水平)。3个对照组均未检测到特异性抗体,4个实验组均检测到了特异性抗体,且在加强免疫后,特异性抗体水平有进一步提高。在第5周,重组质粒+佐剂组的特异性抗体水平均高于重组质粒组,在统计学上差异极显著(P<0.001),说明重组质粒与佐剂混合后免疫,是有助于重组质粒在体内的缓慢释放而激发更高的免疫效果。重组质粒+佐剂组与3个对照组相比,统计学差异极显著(P<0.001),重组质粒+佐剂组与iORFV+佐剂组和iSPPV+佐剂组相比,特异性抗体水平相当,统计学无显著差异(P>0.05)。以上结果证明重组质粒+佐剂组可以激发小鼠产生抗ORFV和SPPV的特异性抗体。在加强免疫后,重组质粒+佐剂组的免疫水平再次升高,证明该组疫苗可激活小鼠的体液免疫。

(三)血清中免疫球蛋白IgG1、IgG2a水平检测

(1)检测:血清中免疫球蛋白IgG1、IgG2a的检测均按照ELISA检测试剂盒说明书进行操作,对免疫后的第1周、第3周、第5周采集的血清进行检测,每个样品重复3次。

(2)结果:如图9所示(图9中,图A为血清中IgG1水平,图B为血清中IgG2a水平)。免疫后的第1周,各组的免疫球蛋白IgG1和IgG2a水平在统计学上无显著差异(P>0.05),在第3周和第5周的血清中,实验组中的IgG1和IgG2a水平均有增高,而3个对照组未见升高。

重组质粒+佐剂组的IgG1的水平最高,在第5周的水平比第3周高0.44倍;其IgG2a的水平也最高,在第5周的水平比第3周高0.92倍,IgG2a水平在加强免疫后增高幅度要大于IgG1,证明重组质粒+佐剂组主要引起机体的Th1型细胞免疫。

第5周IgG1水平中,重组质粒+佐剂组比iORFV+佐剂组高0.04倍,统计学无显著差异(P>0.05),比iSPPV+佐剂组高0.12倍,统计学差异显著(P<0.01);第5周IgG2a水平中,重组质粒+佐剂组比iORFV+佐剂组高0.09倍,统计学无显著差异(P>0.05),比iSPPV+佐剂组高0.14倍,统计学差异显著(P<0.05)。

以上结果证明,重组质粒+佐剂组具有较好的免疫原性。

(四)血清中细胞因子IL-4和IFN-γ水平检测

(1)检测:对免疫后的第1周、第3周、第5周血清中的细胞因子进行检测,IL-4和IFN-γ的检测均按照试剂盒的说明书操作,每个血清样品重复3次。

(2)结果:如图10所示(图A为血清中IL-4水平,图B为血清中IFN-γ水平)。实验组的IL-4和IFN-γ水平都随着加强免疫而增高,对照组均未见升高趋势。

重组质粒+佐剂组分泌的IL-4和IFN-γ水平最高,分泌的IL-4水平在第5周比第3周高0.57倍,分泌的IFN-γ水平在第5周比第3周高0.72倍,IL-4的上升幅度不如IFN-γ的上升幅度大,结果表明,重组质粒+佐剂组主要诱导Th1型细胞免疫,与免疫球蛋白水平的检测结果一致。

第5周IL-4水平中,重组质粒+佐剂组比iORFV+佐剂组高0.21倍,统计学差异显著极(P<0.001),比iSPPV+佐剂组高0.09倍,统计学无差异显著(P>0.05);第5周IFN-γ水平中,重组质粒+佐剂组比iORFV+佐剂组高0.19倍,统计学差异显著(P<0.05),比iSPPV+佐剂组高0.27倍,统计学差异显著(P<0.01)。

以上结果证明,重组质粒+佐剂组可以引起机体较高的免疫反应。

综上所述,pcDNA3.1-B2L-P2A-P32重组质粒可以诱导小鼠产生较高免疫水平,可作为同时预防羊口疮病与绵羊痘病候选疫苗的参考。

实施例5

实施例5是实施例1-4相似,不同的是重组DNA疫苗中,抗原编码序列B2L-P2A-P32(截短的P32)的氨基酸序列如Seq ID NO:16所示。

实施例5提供的重组DNA疫苗能够诱导小鼠产生保护性抗体。

实施例5提供的重组DNA疫苗用于制备抗羊口疮和绵羊痘联合DNA疫苗。

对比例1不同抗原序列对切割效率的影响

在对比例中,选择羊口疮病毒F1L(059)基因与绵羊痘病毒P32基因,并使用自剪切肽P2A的DNA片段将两个基因串联,制备了pcDNA3.1-FLAG-F1L-P2A-P32-MYC重组质粒,转染真核细胞后进行Western Blot分析,如图11所示(图11中,图A为使用FLAG标签抗体的Western Blot结果,泳道从左到右分别为:1:pcDNA3.1(+)2:pcDNA3.1-FLAG-B2L-P2A-P32-MYC重组质粒3:pcDNA3.1-FLAG-F1L-P2A-P32-MYC重组质粒4:293T细胞;图B为使用MYC标签抗体的Western Blot结果,泳道从左到右分别为:1:pcDNA3.1(+)2:pcDNA3.1-FLAG-B2L-P2A-P32-MYC重组质粒3:pcDNA3.1-FLAG-F1L-P2A-P32-MYC重组质粒4:293T细胞),结果表明,翻译后的多肽没有在P2A处发生自剪切,不能得到独立的FLAG-F1L蛋白和P32-MYC蛋白。在两个图片中的泳道2中,在81kDa处检测到了未切割的FLAG-B2L-P2A-P32-MYC融合条带,在43kDa处检测到了切割后的FLAG-B2L蛋白,在37kDa处检测到了切割后的P32-MYC蛋白:而在两个图片的泳道3中,仅检测到了未切割的融合条带,未出现在预期的77kda处,而是出现在了大于81kDa处,推测融合条带未能切割的原因是蛋白折叠异常;FLAG-F1L与P32-MYC基因在细胞内未切割,均未检测到。

序列表

<110> 吉林大学

<120> 一种抗羊口疮和绵羊痘的重组DNA疫苗及其重组质粒

<160> 16

<170> SIPOSequenceListing 1.0

<210> 1

<211> 1134

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 1

atgtggccgt tctcctccat ccccgtgggc gccgactgcc gcgtcgtgga gacgctgccc 60

gccgaggtgg cgtccctggc gcagggcaac atgagcaccc tcgactgctt caccgccatc 120

gccgagtccg cgaagaagtt tttgtacatc tgcagcttct gctgcaacct gagctccacc 180

aaggagggcg tcgacgtcaa ggacaagctc tgcacgctcg ccaaggaggg cgtaaacgtc 240

acgctgctcg tggacgtgca gagcaaagac aaggacgcgg acgagctgcg cgaggcgggc 300

gtcaactact acaaggtcaa ggtgtccacg cgggaaggcg tcggcaacct tctcggcagc 360

ttctggctct cggacgccgg gcactggtac gtgggcagcg cctcgctcac gggcgggtcc 420

gtgtccacca tcaagaacct cgggctctac tccaccaaca agcacctggc ctgggacctc 480

atgaaccgct acaacacctt ctactccatg atcgtggagc cgaaggtgcc gttcacgcgg 540

ctctgctgcg ccatcgtcac gcccacggcc acgaacttcc acctcaacca ctccgggggc 600

ggcgtattct tctcggactc gccggagcgc ttcctaggct tctaccgcac gctcgacgag 660

gacctcgtgc tgcaccgcat cgagaacgcc aagaacagca tcgacctctc gctgctctcg 720

atggtgccgg tgatcaagca cgccagcgcc gtggagtact ggccgcagat cattgacgcg 780

ctgctgcgcg cggccatcaa ccgcggtgtg cgcgtgcgcg tgatcatcac cgagtggaag 840

aacgcggacc cgctgtcggt ctcggccgcg cgcagcctca acgactttgg cgtcggcagc 900

gtggacatgt ccgtgcgcaa gttcgtggta cccggccggg acgacgccgc gaacaacact 960

aagctgctca tcgtggacga caccttcgcg cacctcacgg tcgccaacct cgacggcacg 1020

cactaccgct accacgcctt cgtgagcgtg aacgccgaga agggcgacat cgtcaaggac 1080

ctgtccgcgg tcttcgagcg ggactggcgc tcggagttct gcaagccaat aaat 1134

<210> 2

<211> 972

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 2

atggcagata tcccattata tgttatacca atcgttggtc gcgaaatttc agatgtagtt 60

ccagaattaa aaagtgacaa tgatatattt tataaaaaag ttgacacagt aaaagatttt 120

aaaaattcag atgtaaattt ttttttaaaa gataaaaaag atgatatcag tttatcatat 180

aagttactta tatgggaaaa ggtagaaaaa tcaggaggtg ttgaaaattt tacagaatat 240

ttttctggat tatgtaatgc tctttgtaca aaagaggcaa aaagttctat tgcaaaacac 300

tttagtttat ggaaatcgta tgccgatgcg gatataaaaa attctgagaa taagtttatt 360

gttgttatag aagatgataa cacattaaaa gattcaataa taatacataa cattataatt 420

gaaatgcaag aaaaaaatat agacattttc caattacgtg aaacttttca taatagtaat 480

tctagaatat tgttcaatca agaaaataat aattttatgt attcgtacac agggggatat 540

gattttacct tatccgcata tgtaattaga ttatcgtctg ccataaaaat aataaacgaa 600

attataaaaa ataaaggtat ttctaccagt ttaagttttg aaatgtataa gttagagaaa 660

gaactaaaac taaatagaca agttttaaat gactcatcta agtatatact tcacaatact 720

aagtatttgt caaaaaaaag agctaacgaa atgaaaaacg gtatatggaa tagagttgga 780

aaatggatgg ctcatagatt tcctgatttt tcttactatg tatcccatcc attggtttca 840

ttttttggta tatttgatat tagtataata ggagcactta ttattttatt tattataata 900

atgataattt ttaatttgaa ttctaaatta ctatggtttt tagcaggtat gttatttacg 960

tatataattt ag 972

<210> 3

<211> 67

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 3

ttggtaccga gctcggatcc gccaccatgg attacaagga tgacgacgat aagatgtggc 60

cgttctc 67

<210> 4

<211> 64

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 4

cgacatctcc ggcttgtttc agcagagaga agtttgttgc atttattggc ttgcagaact 60

ccga 64

<210> 5

<211> 64

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 5

gctgaaacaa gccggagatg tcgaagagaa tcctggaccg atggcagata tcccattata 60

tgtt 64

<210> 6

<211> 69

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 6

cagcgggttt aaacgggccc cagatcctct tctgagatga gtttttgttc aattatatac 60

gtaaataac 69

<210> 7

<211> 40

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 7

tagcgtttaa acttaagctt gccaccatgt ggccgttctc 40

<210> 8

<211> 42

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 8

cacactggac tagtggatcc ctaaattata tacgtaaata ac 42

<210> 9

<211> 2163

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 9

atgtggccgt tctcctccat ccccgtgggc gccgactgcc gcgtcgtgga gacgctgccc 60

gccgaggtgg cgtccctggc gcagggcaac atgagcaccc tcgactgctt caccgccatc 120

gccgagtccg cgaagaagtt tttgtacatc tgcagcttct gctgcaacct gagctccacc 180

aaggagggcg tcgacgtcaa ggacaagctc tgcacgctcg ccaaggaggg cgtaaacgtc 240

acgctgctcg tggacgtgca gagcaaagac aaggacgcgg acgagctgcg cgaggcgggc 300

gtcaactact acaaggtcaa ggtgtccacg cgggaaggcg tcggcaacct tctcggcagc 360

ttctggctct cggacgccgg gcactggtac gtgggcagcg cctcgctcac gggcgggtcc 420

gtgtccacca tcaagaacct cgggctctac tccaccaaca agcacctggc ctgggacctc 480

atgaaccgct acaacacctt ctactccatg atcgtggagc cgaaggtgcc gttcacgcgg 540

ctctgctgcg ccatcgtcac gcccacggcc acgaacttcc acctcaacca ctccgggggc 600

ggcgtattct tctcggactc gccggagcgc ttcctaggct tctaccgcac gctcgacgag 660

gacctcgtgc tgcaccgcat cgagaacgcc aagaacagca tcgacctctc gctgctctcg 720

atggtgccgg tgatcaagca cgccagcgcc gtggagtact ggccgcagat cattgacgcg 780

ctgctgcgcg cggccatcaa ccgcggtgtg cgcgtgcgcg tgatcatcac cgagtggaag 840

aacgcggacc cgctgtcggt ctcggccgcg cgcagcctca acgactttgg cgtcggcagc 900

gtggacatgt ccgtgcgcaa gttcgtggta cccggccggg acgacgccgc gaacaacact 960

aagctgctca tcgtggacga caccttcgcg cacctcacgg tcgccaacct cgacggcacg 1020

cactaccgct accacgcctt cgtgagcgtg aacgccgaga agggcgacat cgtcaaggac 1080

ctgtccgcgg tcttcgagcg ggactggcgc tcggagttct gcaagccaat aaatgcaaca 1140

aacttctctc tgctgaaaca agccggagat gtcgaagaga atcctggacc gatggcagat 1200

atcccattat atgttatacc aatcgttggt cgcgaaattt cagatgtagt tccagaatta 1260

aaaagtgaca atgatatatt ttataaaaaa gttgacacag taaaagattt taaaaattca 1320

gatgtaaatt tttttttaaa agataaaaaa gatgatatca gtttatcata taagttactt 1380

atatgggaaa aggtagaaaa atcaggaggt gttgaaaatt ttacagaata tttttctgga 1440

ttatgtaatg ctctttgtac aaaagaggca aaaagttcta ttgcaaaaca ctttagttta 1500

tggaaatcgt atgccgatgc ggatataaaa aattctgaga ataagtttat tgttgttata 1560

gaagatgata acacattaaa agattcaata ataatacata acattataat tgaaatgcaa 1620

gaaaaaaata tagacatttt ccaattacgt gaaacttttc ataatagtaa ttctagaata 1680

ttgttcaatc aagaaaataa taattttatg tattcgtaca cagggggata tgattttacc 1740

ttatccgcat atgtaattag attatcgtct gccataaaaa taataaacga aattataaaa 1800

aataaaggta tttctaccag tttaagtttt gaaatgtata agttagagaa agaactaaaa 1860

ctaaatagac aagttttaaa tgactcatct aagtatatac ttcacaatac taagtatttg 1920

tcaaaaaaaa gagctaacga aatgaaaaac ggtatatgga atagagttgg aaaatggatg 1980

gctcatagat ttcctgattt ttcttactat gtatcccatc cattggtttc attttttggt 2040

atatttgata ttagtataat aggagcactt attattttat ttattataat aatgataatt 2100

tttaatttga attctaaatt actatggttt ttagcaggta tgttatttac gtatataatt 2160

tag 2163

<210> 10

<211> 19

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 10

gctcgacgag ttcggaacc 19

<210> 11

<211> 18

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 11

gcagtcacag agtccctg 18

<210> 12

<211> 18

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 12

tggctcatag atttcctg 18

<210> 13

<211> 22

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 13

cgtaaataac atacctgcta aa 22

<210> 14

<211> 20

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 14

ggtgaaggtc ggtgtgaacg 20

<210> 15

<211> 20

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 15

ctcgctcctg gaagatggtg 20

<210> 16

<211> 2034

<212> DNA

<213> 人工序列(Artificial Sequence)

<400> 16

atgtggccgt tctcctccat ccccgtgggc gccgactgcc gcgtcgtgga gacgctgccc 60

gccgaggtgg cgtccctggc gcagggcaac atgagcaccc tcgactgctt caccgccatc 120

gccgagtccg cgaagaagtt tttgtacatc tgcagcttct gctgcaacct gagctccacc 180

aaggagggcg tcgacgtcaa ggacaagctc tgcacgctcg ccaaggaggg cgtaaacgtc 240

acgctgctcg tggacgtgca gagcaaagac aaggacgcgg acgagctgcg cgaggcgggc 300

gtcaactact acaaggtcaa ggtgtccacg cgggaaggcg tcggcaacct tctcggcagc 360

ttctggctct cggacgccgg gcactggtac gtgggcagcg cctcgctcac gggcgggtcc 420

gtgtccacca tcaagaacct cgggctctac tccaccaaca agcacctggc ctgggacctc 480

atgaaccgct acaacacctt ctactccatg atcgtggagc cgaaggtgcc gttcacgcgg 540

ctctgctgcg ccatcgtcac gcccacggcc acgaacttcc acctcaacca ctccgggggc 600

ggcgtattct tctcggactc gccggagcgc ttcctaggct tctaccgcac gctcgacgag 660

gacctcgtgc tgcaccgcat cgagaacgcc aagaacagca tcgacctctc gctgctctcg 720

atggtgccgg tgatcaagca cgccagcgcc gtggagtact ggccgcagat cattgacgcg 780

ctgctgcgcg cggccatcaa ccgcggtgtg cgcgtgcgcg tgatcatcac cgagtggaag 840

aacgcggacc cgctgtcggt ctcggccgcg cgcagcctca acgactttgg cgtcggcagc 900

gtggacatgt ccgtgcgcaa gttcgtggta cccggccggg acgacgccgc gaacaacact 960

aagctgctca tcgtggacga caccttcgcg cacctcacgg tcgccaacct cgacggcacg 1020

cactaccgct accacgcctt cgtgagcgtg aacgccgaga agggcgacat cgtcaaggac 1080

ctgtccgcgg tcttcgagcg ggactggcgc tcggagttct gcaagccaat aaatgcaaca 1140

aacttctctc tgctgaaaca agccggagat gtcgaagaga atcctggacc gatggcagat 1200

atcccattat atgttatacc aatcgttggt cgcgaaattt cagatgtagt tccagaatta 1260

aaaagtgaca atgatatatt ttataaaaaa gttgacacag taaaagattt taaaaattca 1320

gatgtaaatt tttttttaaa agataaaaaa gatgatatca gtttatcata taagttactt 1380

atatgggaaa aggtagaaaa atcaggaggt gttgaaaatt ttacagaata tttttctgga 1440

ttatgtaatg ctctttgtac aaaagaggca aaaagttcta ttgcaaaaca ctttagttta 1500

tggaaatcgt atgccgatgc ggatataaaa aattctgaga ataagtttat tgttgttata 1560

gaagatgata acacattaaa agattcaata ataatacata acattataat tgaaatgcaa 1620

gaaaaaaata tagacatttt ccaattacgt gaaacttttc ataatagtaa ttctagaata 1680

ttgttcaatc aagaaaataa taattttatg tattcgtaca cagggggata tgattttacc 1740

ttatccgcat atgtaattag attatcgtct gccataaaaa taataaacga aattataaaa 1800

aataaaggta tttctaccag tttaagtttt gaaatgtata agttagagaa agaactaaaa 1860

ctaaatagac aagttttaaa tgactcatct aagtatatac ttcacaatac taagtatttg 1920

tcaaaaaaaa gagctaacga aatgaaaaac ggtatatgga atagagttgg aaaatggatg 1980

gctcatagat ttcctgattt ttcttactat gtatcccatc cattggtttc attt 2034

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号