首页> 中国专利> PVA/木薯淀粉/LAE/花青素智能显色活性复合膜的制备及其在包装抑菌方面的应用

PVA/木薯淀粉/LAE/花青素智能显色活性复合膜的制备及其在包装抑菌方面的应用

摘要

本发明提供一种PVA/木薯淀粉/LAE/花青素智能显色活性复合膜的制备及其在包装抑菌方面的应用,属于食品包装材料技术领域,是将木薯淀粉糊化后,与PVA溶液、甘油混合,再加入总质量1~5%重量的LAE和总质量5~50%重量的花青素,于水浴环境中加热、搅拌混合,即得到铸膜液,最后将铸膜液通过流延法得到成品复合膜。本发明复合膜可以更好的阻止紫外线和可见光透过,有助于防止食品降解氧化;得到的复合膜具有较高的吸水率和水蒸气透过率,具有较好的保鲜效果;在不同酸碱度条件下能够呈现不同的颜色,且成分安全、无毒害作用,能够使其中所包装食品的新鲜程度有直观的现象。

著录项

  • 公开/公告号CN113337014A

    专利类型发明专利

  • 公开/公告日2021-09-03

    原文格式PDF

  • 申请/专利权人 广西民族大学;

    申请/专利号CN202110448563.7

  • 申请日2021-04-25

  • 分类号C08L3/02(20060101);C08L29/04(20060101);C08K5/053(20060101);C08K5/1545(20060101);C08J5/18(20060101);B65D65/38(20060101);

  • 代理机构45122 南宁启创知识产权代理事务所(特殊普通合伙);

  • 代理人余小宁

  • 地址 530006 广西壮族自治区南宁市西乡塘区大学东路188号

  • 入库时间 2023-06-19 12:27:31

说明书

技术领域

本发明属于食品包装材料技术领域,具体涉及一种PVA/木薯淀粉/LA/花青素智能显色活性复合膜的制备及其在包装抑菌方面的应用。

背景技术

智能包装是一种新型食品包装,消费者可以通过其颜色变化评估食品质量和新鲜程度,欧洲法律将其定义为是一种检测包装食品状况或者食品周围环境的材料和物品。当食品变质时pH值会发生变化,将pH指示剂添加到包装材料中就可实现对包装内食品质量和新鲜程度实时监测。pH指示剂包括氯酚红、溴酚蓝、溴甲酚蓝和溴甲酚绿等,但这些合成化学试剂对人体健康具有潜在影响,因此在智能包装研发和生产中应避免使用这类化学试剂。花青素属于类黄酮物质(酚类植物化学物质),是一种植物次生代谢产物,广泛存在于有色植物花、茎、叶和果实中,是可再生、安全无毒的天然色素,能溶于水、甲醇和乙醇,并能在较宽pH值范围内发生颜色变化,被广泛应用于智能包装研发。

已有较多学者研究了不同花青素对薄膜性能的影响。Qin等人制备含有花青素和甜菜花青素的PVA/淀粉薄膜,他们发现两种花青素均可提高薄膜对紫外线和可见光的阻隔、耐水和抗氧化等性能,与花青素比较,甜菜花青素可以提高薄膜致密性。Chen等人制备姜黄素和紫番薯花青素薄膜,测试结果显示这两种添加剂对薄膜水溶性和水蒸气透过率等性能没有明显影响,薄膜能在鱼类新鲜度检测实验中随着鱼肉变质而发生明显变色。蒋光阳等人制备含有紫薯花青素的不同基材复合膜,通过对比发现含有花青素的马铃薯淀粉/羧甲基纤维素钠薄膜拉伸强度最高为15.39MPa左右,马铃薯淀粉/魔芋葡甘露聚糖薄膜断裂伸长率最高为44.79MPa左右。邹小波等人制备含有紫薯花青素的PVA/紫薯淀粉复合膜,研究表明,添加了紫薯花青素薄膜力学性能升高,并可检测牛奶新鲜程度,随着牛奶逐渐变质,薄膜颜色从淡紫色逐渐变为浅红色。

多种花青素已被用于制备活性包装,如玫瑰茄花青素、蓝莓花青素、黑果枸杞花青素、杨梅花青素、黑胡萝卜花青素和紫薯花青素等,有研究指出花青素种类对薄膜性能有不同影响。

目前对桑椹花青素/PVA/木薯淀粉智能薄膜研究较少,含有花青素/LAE的PVA/木薯淀粉智能活性膜(LAC膜)的性能影响尚不完全清楚,因此,为了研究一种抑菌性能更好、安全性更高的智能显色复合膜,现需探究花青素含量对LAC复合膜的制备及其性能的影响、及其体外抗菌性能及机理。

发明内容

为解决上述技术问题,本发明提供一种PVA/木薯淀粉/LAE/花青素智能显色活性复合膜的制备及其在包装抑菌方面的应用,所述复合膜在不同酸碱度条件下能够呈现不同的颜色,能够使其中所包装食品的新鲜程度有直观的现象;有助于防止食品降解氧化,保鲜效果好,具有良好的抑菌性、安全性。

为实现上述目的,本发明提供如下技术方案:

一种PVA/木薯淀粉/LAE/花青素智能显色活性复合膜的制备方法,将木薯淀粉糊化后,与PVA溶液、甘油混合,再加入总质量1~5%重量的LAE和总质量5~50%重量的花青素,于恒温水浴加热条件下搅拌混合均匀,即得到铸膜液,最后将铸膜液通过流延法得到成品复合膜。

进一步地,所述PVA/木薯淀粉/LAE/花青素智能显色活性复合膜的制备方法具体包括如下步骤:

(1)糊化木薯淀粉

将木薯淀粉加入到去离子水中,配制成质量浓度为10~11%的淀粉悬液;将所述淀粉悬液放入恒温水浴环境中,加热至温度81~84℃并搅拌30~35min至其完全糊化,得到糊化淀粉,待用;

(2)制备PVA溶液

将PVA按照一定固液比放入去离子水中,将其至于恒温水浴环境中,加热至温度98~100℃并搅拌54~58min至其完全溶解,得到浓度为10~11%的PVA溶液;

(3)配制铸膜液

将糊化淀粉与PVA溶液按照70:30~32的体积比混合,得到混合物1,向混合物1中加入甘油,得到混合物2,将混合物2至于恒温水浴环境中,加热至温度81~84℃并搅拌30~35min使溶液混合均匀,得到混合溶液,待用;

将所述混合溶液中加入其总质量1~5%重量的LAE和总质量5~50%重量的花青素,继续于23~25℃恒温水浴环境中搅拌30~33min至所有组分混合均匀,取出后,放于超声环境下于常温震荡4~5min,即可得到所述铸膜液;

(4)流延法铸膜

将所述铸膜液采用流延法倒入模具中进行铸膜,然后放于恒温环境中干燥、脱模后,即得到复合膜,密封保存即可。

进一步地,所述复合膜的厚度为0.11~0.18mm,拉伸强度为11.25~24.43MPa,断裂伸长率为103~439%,200nm下透光率为0,不透明度为4.11~11.01,吸水率为15.79~17.65%,水蒸气透过率为1.00×10

进一步地,所述搅拌是以425~430r/min速度进行。

进一步地,所述甘油的加入量是混合物1的总干重18~20%。

进一步地,所述花青素为桑葚花青素;步骤(3)加入花青素的重量为所述混合溶液总质量的5%。

进一步地,步骤(4)所述干燥温度为25~28℃,干燥时间为24h。

本发明提供上述任一种制备方法得到PVA/木薯淀粉/LAE/花青素智能显色活性复合膜。

本发明提供所述PVA/木薯淀粉/LAE/花青素智能显色活性复合膜在包装抑菌方面的应用,所述复合膜对大肠杆菌、金黄色葡萄球菌具有抑菌性,可应用在食品、医药产品中的包装材料。

本发明具有以下有益效果:

1.本发明复合膜中使用的PVA与木薯淀粉具有较好的相容性,还添加了LAE使复合膜的微观形貌发生改变,且LAE薄膜厚度没有显著影响;本发明利用LAE聚集和甘油的协同增塑作用,使得到的复合膜拉伸强度略有降低,但断裂伸长率显著增加,拉伸强度为11.25~24.43MPa,断裂伸长率为103~439%;还添加了花青素在不同酸碱度条件下能够呈现不同的颜色,且成分安全、无毒害作用,能够使其中所包装食品的新鲜程度有直观的现象。

2.本发明复合膜具有较低紫外线透过率和较高透明度,不仅可以保护食品质量和风味,还有助于向消费者更好的展示食品;本发明复合膜可以更好的阻止紫外线和可见光透过,有助于防止食品降解氧化;本发明加入的花青素发生团聚,破坏薄膜结构完整性,促进水分子传输,进而使水蒸气透过率稍有增高,具有较好的保鲜效果。

3.本发明的复合膜对大肠杆菌和金黄色葡萄球菌即有抗菌活性,加入的LAE通过改变细胞膜电位和通透性,导致细菌细胞膜的通透性增加、进而使其内容物外泄,因此实现了灭菌效果;

4.本发明的智能显色膜同时具有抗菌作用和良好显色效果,通过合理控制原料的用量,解决了两者之间的冲突问题,利用花青素在不同酸碱度条件下能够呈现不同的颜色,能够使复合膜中所包装食品的新鲜程度有直观的现象,在对牛奶包装时,可在腐败变质牛奶中由紫灰色变成紫红色,具有良好的显色效果。

5.本发明使用的原料木薯淀粉中的支链淀粉含量较多,在制作过程中容易成膜,降低了操作难度,加入了甘油能起到增塑作用,提高包装膜的塑性;同时两组成分安全,适用于食品加工领域,同时还有助于降低生产成本,适于推广使用。

附图说明

图1为各组复合膜的SEM照片(图中a-j依次为对照组、实施例1-4组、空白组、对比例1-4组)。

图2为各组复合膜的红外光谱图(图中a-j依次为对照组、实施例1-4组、空白组、对比例1-4组)。

图3为各组复合膜的X射线衍射谱图(图中a-j依次为对照组、实施例1-4组、空白组、对比例1-4组)。

图4为各组复合膜对彩色圆盘遮挡情况。(图中a、g为无遮挡物情况;b-f依次为空白组、对比例1-4组;h-l依次为对照组、实施例1-4组)。

图5为各组复合膜对大肠杆菌的抑菌圈(图中a-j依次为对照组、实施例1-4组、空白组、对比例1-4组)。

图6为各组复合膜对金黄色葡萄球菌的抑菌圈(图中a-j依次为对照组、实施例1-4组、空白组、对比例1-4组)。

图7为花青素溶液在不同pH值下颜色变化(由左至右依次为pH2-11)。

图8花青素/LAE溶液在不同pH值下颜色变化(由左至右依次为pH2-11)。

图9为对比例1复合膜在不同pH值下颜色变化。

图10本发明实施例1复合膜在不同pH值下颜色变化。

图11浸泡实验前牛奶的初始颜色(图中a-j依次为空白组、对比例1-4组、对照组、实施例1-4组)。

图12浸泡实验后取出各组膜的颜色情况(图中a-j依次为空白组、对比例1-4组、对照组、实施例1-4组)。

图13浸泡实验后牛奶的颜色变化情况(图中a-j依次为空白组、对比例1-4组、对照组、实施例1-4组)。

具体实施方式

下面的实施例可以帮助本领域的技术人员更全面的理解本发明,但不可以以任何方式限制本发明。本发明使用的原料:聚乙烯醇(PVA)为1750±50聚乙烯醇、月桂酰精氨酸乙酯盐酸盐(LAE)纯度为98%、木薯淀粉为食品级、桑葚花青素食品级(含量25%)、丙三醇(甘油)、均购自化学原料、医药原料公司。大肠杆菌、金黄色葡萄球菌购自上海鲁微科技有限公司。胰酪大豆胨琼脂培养基(TSA)、胰酪大豆胨液体培养基(TSB)购自广东环凯微生物科技有限公司。

实施例1

所述PVA/木薯淀粉/LAE/花青素智能显色活性复合膜的制备方法,具体包括如下步骤:

(1)糊化木薯淀粉

将木薯淀粉加入到去离子水中,配制成质量浓度为10%的淀粉悬液;将所述淀粉悬液放入恒温水浴环境中,加热至温度81℃并搅拌30min至其完全糊化,得到糊化淀粉,待用;所述搅拌是以425r/min速度进行;

(2)制备PVA溶液

将PVA按照一定固液比放入去离子水中,将其至于恒温水浴环境中,加热至温度98℃并搅拌54min至其完全溶解,得到浓度为10%的PVA溶液;所述搅拌是以425r/min速度进行;

(3)配制铸膜液

将糊化淀粉与PVA溶液按照70:30的体积比混合,得到混合物1,向混合物1中加入甘油,得到混合物2,将混合物2至于恒温水浴环境中,加热至温度81℃并搅拌30min使溶液混合均匀,得到混合溶液,待用;所述甘油的加入量是混合物1的总干重18%;

将所述混合溶液中加入其总质量5%重量的LAE和总质量5%重量的花青素,继续于23℃恒温水浴环境中搅拌30min至所有组分混合均匀,取出后,放于频率为28KHz的超声环境下于常温震荡4min,即可得到所述铸膜液;所述搅拌是以425r/min速度进行;

(4)流延法铸膜

将所述铸膜液采用流延法倒入模具中进行铸膜,然后放于恒温环境中干燥、脱模后,即得到复合膜,密封保存即可;所述干燥温度为25℃,干燥时间为24h。

实施例2

所述PVA/木薯淀粉/LAE/花青素智能显色活性复合膜的制备方法,具体包括如下步骤:

(1)糊化木薯淀粉

将木薯淀粉加入到去离子水中,配制成质量浓度为11%的淀粉悬液;将所述淀粉悬液放入恒温水浴环境中,加热至温度84℃并搅拌35min至其完全糊化,得到糊化淀粉,待用;所述搅拌是以430r/min速度进行;

(2)制备PVA溶液

将PVA按照一定固液比放入去离子水中,将其至于恒温水浴环境中,加热至温度100℃并搅拌58min至其完全溶解,得到浓度为11%的PVA溶液;所述搅拌是以430r/min速度进行;

(3)配制铸膜液

将糊化淀粉与PVA溶液按照70:32的体积比混合,得到混合物1,向混合物1中加入甘油,得到混合物2,将混合物2至于恒温水浴环境中,加热至温度84℃并搅拌35min使溶液混合均匀,得到混合溶液,待用;所述甘油的加入量是混合物1的总干重20%;

将所述混合溶液中加入其总质量1%重量的LAE和总质量20%重量的花青素,继续于25℃恒温水浴环境中搅拌33min至所有组分混合均匀,取出后,放于频率为30KHz的超声环境下于常温震荡5min,即可得到所述铸膜液;所述搅拌是以430r/min速度进行;

(4)流延法铸膜

将所述铸膜液采用流延法倒入模具中进行铸膜,然后放于恒温环境中干燥、脱模后,即得到复合膜,密封保存即可;所述干燥温度为28℃,干燥时间为24h。

实施例3

所述PVA/木薯淀粉/LAE/花青素智能显色活性复合膜的制备方法,具体包括如下步骤:

(1)糊化木薯淀粉

将木薯淀粉加入到去离子水中,配制成质量浓度为10.5%的淀粉悬液;将所述淀粉悬液放入恒温水浴环境中,加热至温度82℃并搅拌31min至其完全糊化,得到糊化淀粉,待用;所述搅拌是以428r/min速度进行;

(2)制备PVA溶液

将PVA按照一定固液比放入去离子水中,将其至于恒温水浴环境中,加热至温度99℃并搅拌55min至其完全溶解,得到浓度为10.5%的PVA溶液;所述搅拌是以428r/min速度进行;

(3)配制铸膜液

将糊化淀粉与PVA溶液按照70:31的体积比混合,得到混合物1,向混合物1中加入甘油,得到混合物2,将混合物2至于恒温水浴环境中,加热至温度82℃并搅拌31min使溶液混合均匀,得到混合溶液,待用;所述甘油的加入量是混合物1的总干重19%;

将所述混合溶液中加入其总质量4%重量的LAE和总质量35%重量的花青素,继续于24℃恒温水浴环境中搅拌31min至所有组分混合均匀,取出后,放于频率为29KHz的超声环境下于常温震荡4.5min,即可得到所述铸膜液;所述搅拌是以428r/min速度进行;

(4)流延法铸膜

将所述铸膜液采用流延法倒入模具中进行铸膜,然后放于恒温环境中干燥、脱模后,即得到复合膜,密封保存即可;所述干燥温度为26℃,干燥时间为24h。

实施例4

所述PVA/木薯淀粉/LAE/花青素智能显色活性复合膜的制备方法,具体包括如下步骤:

(1)糊化木薯淀粉

将木薯淀粉加入到去离子水中,配制成质量浓度为10%的淀粉悬液;将所述淀粉悬液放入恒温水浴环境中,加热至温度81℃并搅拌30min至其完全糊化,得到糊化淀粉,待用;所述搅拌是以430r/min速度进行;

(2)制备PVA溶液

将PVA按照一定固液比放入去离子水中,将其至于恒温水浴环境中,加热至温度100℃并搅拌58min至其完全溶解,得到浓度为10%的PVA溶液;所述搅拌是以430r/min速度进行;

(3)配制铸膜液

将糊化淀粉与PVA溶液按照70:30的体积比混合,得到混合物1,向混合物1中加入甘油,得到混合物2,将混合物2至于恒温水浴环境中,加热至温度81℃并搅拌30min使溶液混合均匀,得到混合溶液,待用;所述甘油的加入量是混合物1的总干重20%;

将所述混合溶液中加入其总质量5%重量的LAE和总质量50%重量的花青素,继续于25℃恒温水浴环境中搅拌30min至所有组分混合均匀,取出后,放于频率为28KHz的超声环境下于常温震荡5min,即可得到所述铸膜液;所述搅拌是以430r/min速度进行;

(4)流延法铸膜

将所述铸膜液采用流延法倒入模具中进行铸膜,然后放于恒温环境中干燥、脱模后,即得到复合膜,密封保存即可;所述干燥温度为25℃,干燥时间为24h。

对照组:不添加花青素,其余均与实施例1一致。

空白组:不添加花青素、LAE,其余均与实施例1一致。

对比例1:不添加LAE,其余均与实施例1一致。

对比例2:不添加LAE,其余均与实施例2一致。

对比例3:不添加LAE,其余均与实施例3一致。

对比例4:不添加LAE,其余均与实施例4一致。

对实施例1-4及空白组进行如下的检测:

1.扫描电子显微镜观察

采用力学性能测试中拉断的样品横截面作为试样观察,用导电胶带将样品粘贴在样品台上。在真空制样机中喷涂金粉,取出后在2kV电压下,放大2000倍观察。结果见图1。

图1为各组复合膜的SEM照片。图1中可见,空白组断面光滑均匀,说明PVA和木薯淀粉相容性较好,二者之间形成氢键;对比例1-4组花青素增多使智能膜断面越来越粗糙,这可能是因为花青素与PVA和淀粉相容性变差,聚集形成团块;本发明实施例1-4组和对照组的膜断面都比较粗糙,这是因为花青素和LAE聚集在薄膜中,影响PVA和淀粉相互作用,导致较为致密的膜结构被破坏,薄膜中也出现少量孔洞。

2.傅里叶变换红外光谱分析

用锉刀将复合膜磨成粉末,样品粉末与溴化钾之比为1:200,在研钵中充分混合均匀。放于干燥箱中脱水,压片。红外光谱扫描范围4000-500cm

图2为各组复合膜的红外光谱图。图2中可见,O-H伸缩振动峰在3280-3384cm

3.X射线衍射分析

将复合膜剪成长宽均为20mm试样,固定在样品台上。X射线辐射源为CuKa,波长15.4nm,电压40kV,电流15mA,步长0.035°,扫描角度3°-60°,连续扫描15s。X射线衍射分析图见图3。复合膜结晶度由MDIJade软件计算,记录在表1中,采用相对面积法,计算公式:

结晶度(%)=Sc/(Sc+S)×100% (1)

上式(1)中,S

表1

注:同一列数据不同上标小写字母表示样本之间的显著性差异(p≤0.05);如未添加上标小写字母则表示数据之间无显著性差异(p>0.05)。

图3为各组复合膜的X射线衍射谱图。由表1和图3中可见未因花青素的加入发生明显变化。纯花青素衍射峰在20.30°,所有薄膜衍射峰位置均在19-20°附近,这是由于木薯淀粉在糊化后结晶结构被破坏,复合膜以PVA晶体结构为主。如表1所示,随着含量增多结晶度降低,这与花青素影响PVA和木薯淀粉有序排列有关,花青素形成具有结晶特性的团聚体导致,表明复合膜结晶度可能与花青素种类、添加剂类型、制备工艺、选用基材有关。

4.厚度及力学性能

在复合膜上选取6个位置(中心1个,边缘5个)测量厚度,取平均值。

复合膜裁剪成长宽分别为60mm和20mm矩形试样条,试样条被拉伸区长度为30mm,拉伸速度10mm/min。结果见表2。

表2

注:同一列数据不同上标小写字母表示样本之间的显著性差异(p≤0.05);如未添加上标小写字母则表示数据之间无显著性差异(p>0.05)。

由表2可见,随着花青素含量增加,复合膜的拉伸强度和断裂伸长率都呈现先增大后减小的变化趋势。添加LAE使复合膜拉伸强度稍有降低,未添加花青素的薄膜拉伸强度为20.95MPa、断裂伸长率为384.43%,当花青素含量为5%时,拉伸强度最高为24.43MPa、断裂伸长率最高为439.25%,继续添加花青素至50%时,拉伸强度降低至11.25MPa、断裂伸长率降低至103.02%。花青素含量低于20%时,拉伸强度和断裂伸长率均先小幅升高后降低,差异同样不显著。因此,添加少量花青素(≤20%)不会对复合膜力学性能产生显著影响,这是因为少量花青素可在薄膜中均匀分散,进而维持或稍有加强PVA和木薯淀粉间相互作用,使力学性能保持不变或稍有升高。且高于目前市面上常用的低密度聚乙烯膜。

5.紫外线阻隔、透光率与不透明度

将复合膜剪成长宽为别为40mm和10mm矩形试样条并固定在样品池内,在波长为200-400nm紫外光区间内测量紫外线屏蔽性能,在400-800nm可见光区内测量薄膜的透光率与不透明度,记录在表3。图4是复合膜对彩色圆盘遮挡情况。不透明度计算公式为:

不透明度=(-logT

上式(2)中T

表3

注:同一列数据不同上标小写字母表示样本之间的显著性差异(p≤0.05)。

由表3可以发现,透光率随花青素含量增多而降低,空白组未添加LAE和花青素,其紫外线透过率较高,这是因为PVA和淀粉不能阻隔紫外线;其余组分对紫外线透过率均为0%,这说明含有LAE、或含有花青素的复合膜均具有更好紫外线阻隔作用,LAE容易在薄膜中聚集,阻碍紫外线在薄膜中的通路,花青素可以很好吸收紫外光,实施例1组在波长为400nm紫外线透过率仅有13%左右,这是因为花青素能吸收紫外光,同时LAE聚集也会阻碍光通路;在食品包装中,对紫外线的阻隔性能强,有助于延长食品保质期、减少氧化,更好保存食品营养、风味和颜色。

在可见光区(400-800nm),含有LAE的复合膜透光率略低于不含LAE的薄膜。在800nm波长下,不含LAE薄膜透光率为77.84%,不同LAE含量复合膜透光率分别为74.53%、74.25%、42.80%和72.54%。总的来说,随着LAE含量增加,薄膜透光率稍有降低,这可能与LAE的聚集有关,较多LAE容易形成更大聚集体,从而阻碍光在膜中的通路。对可见光的阻隔性能也在食品保存中起重要作用,可以防止维生素和色素降解、防止有机物被氧化。

图4为各组复合膜对彩色圆盘遮挡情况。由图4肉眼可见,随着花青素含量增多,颜色差异明显、透明性降低。但未添加花青素和添加5%花青素薄膜不透明度值均小于5,说明其是透明的。

6.吸水率和水蒸气透过率

将复合膜裁剪成长宽均为20mm试样,将恒温电热干燥箱升温至50℃,放入试样24h,干燥至恒重,称量记为M

吸水率(%)=(M

上式(3)中,M

采用ASTME96-00方法,用直径为60mm薄膜覆盖至直径为50mm烧杯上(装有30mL去离子水,相对湿度为100%),用凡士林完全密封以防止水从连接处缝隙蒸发。然后称量烧杯整体重量,将其放入装有1kg二氧化硅密闭干燥器中,将干燥器保存在25℃恒温电热干燥箱中,每隔3h称量一次烧杯整体重量,直至稳定不变。记录在表4。水蒸气透过率用烧杯整体减轻重量与其所用时间关系确定,计算公式:

水蒸气透过率(g·m

上式(4)中,dW为烧杯整体减轻重量(g),H为薄膜平均厚度(m),dt为水蒸气分压梯度(dp=2533Pa)下时间变化(s),S为水从薄膜渗透面积(m

表4

注:同一列数据不同上标小写字母表示样本之间的显著性差异(p≤0.05)。

由表4可见,添加较多花青素智能膜水蒸气透过率较高,但各组的指标之间几乎不存在显著性差异,24h后,空白组的水蒸气透过率为4.79×10

7.体外抑菌性能测试

用打孔器将复合膜切割成直径为8mm试样,同时使用直径为90mm培养皿制备TSA平板培养基,将试样和TSA平板在无菌操作台中用紫外线照射杀菌2h。然后分别取10

表5

注:同一列数据的不同上标小写字母表示样本之间的显著性差异(p≤0.05)。

图5为各组复合膜对大肠杆菌的抑菌圈。图6为各组复合膜对金黄色葡萄球菌的抑菌圈。在图5、6和表5可以看出,空白组和对比例1-4对细菌均没有抑制作用,琼脂平板上长满了大肠杆菌和金黄色葡萄球菌,没有出现抑菌圈,本发明所使用的花青素可能不具备抑菌作用。本发明实施例1-4的复合膜出现了较为明显抑菌圈,都有抗菌作用。

8.花青素溶液的颜色随pH值变化分析

在不同pH值(2-11)下,检测花青素和花青素/LAE混合溶液颜色变化,记录在图7、8。

图7为花青素溶液在不同pH值下颜色变化。图8花青素/LAE溶液在不同pH值下颜色变化。如图7、8所示,在花青素溶液中,当酸性条件pH=2时,溶液为桃红色;当中性条件pH=7时,溶液为灰色;当碱性条件pH=11时,溶液为浅黄棕色。在花青素/LAE溶液中,当酸性条件pH=2时,溶液为桃红色,略深于纯花青素溶液;当中性条件pH=7时,溶液为灰色;当碱性条件pH=11时,溶液为深灰色。在酸性条件(pH=2-6)时,两种溶液颜色较为接近,在碱性条件(pH=8-11)时,溶液颜色稍显不同,是由于花青素和LAE相互影响导致这一变化。当酸性条件时溶液为桃红色,这是因为溶液中只有碱性盐离子;当溶液逐渐变成中性时,颜色由桃红色逐渐变成淡粉色直至变成淡灰色,这是因为碱性盐离子失去质子,形成带有蓝色的醌类阳离子;当溶液变成碱性时,伪碱性甲醇结构逐渐被取代,形成带有黄棕色的查尔酮结构。

9.复合膜在不同pH值下颜色变化及其在延缓牛奶腐败中的应用

将薄膜裁剪为长宽均为20mm矩形试样,放入直径为90mm装有30mL鲜牛奶的培养皿中,在室温环境中放置7天,观察牛奶腐败情况和薄膜变色规律。

图9为对比例1复合膜在不同pH值下颜色变化。图10本发明实施例1复合膜在不同pH值下颜色变化。由图9、10可以明显看到,对比例1复合膜在不同pH下的颜色几乎未发生变化,而实施例1复合膜颜色变化较明显。

图11浸泡实验前牛奶的初始颜色。图12浸泡实验后取出各组膜的颜色情况。图13浸泡实验后牛奶的颜色变化情况。由图11-13可见,浸泡前后的空白组和对比例1-4组复合膜颜色几乎未发生变化,实施例1复合膜的颜色变化较明显。图13中空白组和对比例1-4组在7天后颜色改变、结块并出现大量微生物,出现明显的霉变,经测量,pH为3.3;实施例1-4牛奶在7天后颜色改变且结块,但未出现过多微生物,霉变不明显,经测量pH同样为3.3,这说明本发明方法得到的复合膜对微生物有抑制作用,可以延缓或阻止微生物生长。

虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号