首页> 中国专利> 一种基于改进卷积神经网络的轴承故障诊断方法

一种基于改进卷积神经网络的轴承故障诊断方法

摘要

本发明涉及一种基于改进卷积神经网络的轴承故障诊断方法,是将待测滚动轴承的原始振动信号输入到改进的CNN模型中进行故障诊断,所述改进的CNN模型主要由输入层、特征提取层和分类输出层组成,所述特征提取层包含多个依次堆叠的卷积层、激活层和池化层;在最后一组所述特征提取层的卷积层之后采用全局均值池化层代替全连接层,然后连接Softmax分类器;并以Softmax分类器的输出作为测试结果;所述Softmax分类器输出每一行概率值最大的即为所述测试结果。本发明的轴承故障诊断方法直接将原始故障数据作为模型输入,故障分类结果自动输出,大大加快了模型的训练速度;而且提出的方法更适用于故障的在线监测和快速诊断。

著录项

  • 公开/公告号CN113177577A

    专利类型发明专利

  • 公开/公告日2021-07-27

    原文格式PDF

  • 申请/专利权人 上海吞山智能科技有限公司;

    申请/专利号CN202110354327.9

  • 发明设计人 李宏亮;熊文健;周武能;

    申请日2021-04-01

  • 分类号G06K9/62(20060101);G06N3/04(20060101);G01M13/04(20190101);G01M13/045(20190101);

  • 代理机构31303 上海统摄知识产权代理事务所(普通合伙);

  • 代理人杜亚

  • 地址 201101 上海市闵行区东川路555号乙楼B2105室

  • 入库时间 2023-06-19 12:00:51

说明书

技术领域

本发明属于故障检测技术领域,涉及一种基于改进卷积神经网络的轴承故障诊断方法。

背景技术

大数据近年来越来越广泛地应用于人们的生产生活,不仅在医疗能源通信零售业都有着诸多应用,同时它在工业预测方面也具有很大的潜力。现代社会的发展对材料的性能及产量提出了越来越高的要求。随着现代工业体系的发展,工业设备的安全性已成为人们关注的焦点。通过故障诊断,工程师可以判断系统的运行状态和异常情况,并在早期发现潜在的安全隐患,从而规避风险。近几十年来,故障诊断研究吸引了众多国内外学者的关注,一系列的故障诊断方法相继被提出。因此,近年来出现了大量关于故障诊断的研究。近年来,随着机器学习研究的不断兴起,基于数据驱动的智能故障诊断方法逐渐成为故障诊断领域的主流应用,这种方法虽然有一定效果,但是仍然突显出许多不足:一方面,提取的特征主要用于解决特定故障问题,通用性差,且在大数据样本环境下难以完成,另一方面还存在着训练精度不足,训练速度过慢等问题。

因此,在故障诊断研究中,研究一种能够显著提升故障诊断的效率和准确度的故障诊断方法具有十分重要的意义。

发明内容

为解决现有技术中存在的问题,本发明提供一种基于改进卷积神经网络的轴承故障诊断方法;

为达到上述目的,本发明采用的方案如下:

一种基于改进卷积神经网络的轴承故障诊断方法,将待测滚动轴承的原始振动信号输入到改进的CNN模型中进行故障诊断,所述改进的CNN模型主要由输入层、特征提取层和分类输出层组成,所述特征提取层包含多个依次堆叠的卷积层、激活层和池化层;在最后一组所述特征提取层的卷积层之后采用全局均值池化层代替全连接层,然后连接Softmax分类器;并以Softmax分类器的输出作为测试结果;

所述Softmax分类器输出每一行概率值最大的即为所述测试结果(即为模型预测的该样本所属的故障类别。)

作为优选的技术方案:

如上所述的一种基于改进卷积神经网络的轴承故障诊断方法,所述输入层将滚动轴承采集的一维时间序列故障振动信号通过数据重构法转化为二维的输入特征图形式。

输入层用于对获取的原始数据需要进行必要的标准化及格式归整等操作,将原始一维数据转化为CNN模型可训练的类型。通常输入CNN模型的原始数据格式是二维像素网格数据。

如上所述的一种基于改进卷积神经网络的轴承故障诊断方法,所述全局均值池化层输出的是一个m行n列的量化矩阵Y

如上所述的一种基于改进卷积神经网络的轴承故障诊断方法,所述全局均值池化层中全局均值池化的数学表达式为:

式中,等式左边表示第l层经全局均值池化得到的结果;1:h表示均值池化核所对应的输出特征图中范围为横向方向从第1行至第h行的像素点,1:w纵向从第1列至第w列的像素点,c表示共有c维的像素点。

全局均值池化层可以用来解决全连接网络参数过多,从而提出的技术,与池化层操作相类似,全局均值池化是对最后一层卷积操作输出的特征图取全局平均值。将CNN中的最后一个卷积层的卷积核的输出维度设置为n,从而得到n个输出特征图,再采用n个全局均值池化核,每个池化核的大小和步长与输出特征图的尺寸相同,然后求取每个池化核对应的平均值,使每一张特征图生成一个值,即可得到n个与全连接层输出同样效果的值,最后输入到Softmax分类器中。

如上所述的一种基于改进卷积神经网络的轴承故障诊断方法,所述Softmax分类器对Y

其中,y′

如上所述的一种基于改进卷积神经网络的轴承故障诊断方法,所述改进的CNN模型的构建过程为:

(1)将滚动轴承的原始振动信号进行数据格式标准化得到数据集;

(2)将数据集划分为训练集和验证集;

(3)建立初始化的CNN模型;

(4)训练和验证初始化的CNN模型:以训练集为数据源,采用反向传播算法(BP)将误差逐层反向传递,更新各层之间的参数,使损失函数J(w)最小化,若J(w)不收敛,迭代一千次后输出更新的超参数;若J(w)收敛,完成CNN模型参数的训练,并保存模型参数,得到训练后的CNN模型;然后将验证集数据代入训练后的CNN模型,将输出的结果与验证集数据标签对比计算预测精度;

若精度≥95%,则训练后的CNN模型直接作为改进的CNN模型;

若精度<95%,则调整超参数后,再次验证,直至训练后的CNN模型后的精度≥95%,则得到改进的CNN模型。

将改进的CNN算法应用于滚动轴承实验数据集进行故障诊断,并与传统的SVM,BP网络和DNN算法对比分析,验证了改进CNN算法的优越性有效性。

如上所述的一种基于改进卷积神经网络的轴承故障诊断方法,数据格式标准化的公式为:

其中,X代表对应x

如上所述的一种基于改进卷积神经网络的轴承故障诊断方法,训练集和验证集的样本数之比为99:1。

如上所述的一种基于改进卷积神经网络的轴承故障诊断方法,所述调整超参数是指调整卷积层层数。

本发明的原理是:

本发明的一种基于改进卷积神经网络的轴承故障诊断方法,在传统神经网络的基础上引入全局均值池化技术代替传统CNN的全连接层部分,在有效减少了模型训练参数量和计算时间的同时防止模型过拟合,改进的CNN算法无需对原始故障数据做任何的手工特征提取,直接将原始故障数据作为模型输入,故障分类结果自动输出,大大加快了模型的训练速度,然后运用数据增强等深度学习训练技巧防止模型过拟合,使得提出的方法更适用于故障的在线监测和快速诊断,因为整个诊断过程无需任何手工特征提取,“端”到“端”的算法结构具有较好的可操作性和通用性,在诊断准确率及测试时间方面明显优于传统CNN和其他智能算法。本发明具有复杂的网络结构,该模型支持大数据样本环境,并且在大数据的运行下有很好的泛化能力,通用性也就比现有技术强。

有益效果

本发明改进的CNN算法具有更高的故障识别准确率和故障定位能力,通过将该算法应用于滚动轴承故障实验数据进行智能诊断,获得了高达99.04%故障识别准确率,相比于传统的基于手工特征提取的SVM,BP网络和DNN算法以及传统的CNN具有更高的准确率,同时在微小故障诊断方面该算法具有更优越的性能(微小故障数据更精细,更难手工提取特征,改进的CNN算法无需任何手工提取特征,优越性更强);改进的CNN模型相比其他算法具有更短的测试时间,通过混淆矩阵可直接量化故障误判的位置和数量。

附图说明

图1为本发明的基于改进卷积神经网络的轴承故障诊断方法的流程图;

图2为本发明改进卷积神经网络的示意图。

具体实施方式

下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

一种基于改进卷积神经网络的轴承故障诊断方法,如图1所示,具体步骤如下:

(1)构建改进的CNN模型;

(1.1)将滚动轴承的原始振动信号进行数据格式标准化得到数据集;

数据格式标准化的公式为:

其中,X代表对应x

(1.2)将数据集划分为训练集和验证集;训练集和验证集的样本数之比为99:1;

(1.3)建立初始化的CNN模型;

如图2所示,初始化的CNN模型主要由输入层、特征提取层和分类输出层组成;特征提取层包含3个卷积层、2个激活层、2个池化层;在最后一组特征提取层的卷积层之后采用全局均值池化层代替全连接层,然后连接Softmax分类器;

其中,输入层将滚动轴承采集的一维时间序列故障振动信号通过数据重构法转化为二维的输入特征图形式;输入层用于对获取的原始数据需要进行必要的标准化及格式归整等操作,将原始一维数据转化为CNN模型可训练的类型。通常输入CNN模型的原始数据格式是二维像素网格数据;

全局均值池化层中全局均值池化的数学表达式为:

式中,等式左边表示第l层经全局均值池化得到的结果;1:h表示均值池化核所对应的输出特征图中范围为横向方向从第1行至第h行的像素点,1:w纵向从第1列至第w列的像素点,c表示共有c维的像素点;i表示第i维的图;

全局均值池化层输出的是一个m行n列的量化矩阵Y

Softmax分类器对Y

其中,y′

(1.4)训练和验证初始化的CNN模型:以训练集为数据源,采用反向传播算法(BP)将误差逐层反向传递,更新各层之间的参数:如学习率,步长等,使损失函数J(w)最小化,若J(w)不收敛,迭代一千次后输出更新的参数;若J(w)收敛,完成CNN模型参数的训练,并保存模型参数,得到训练后的CNN模型;然后将验证集数据代入训练后的CNN模型,将输出的结果与验证集数据标签对比计算预测精度;

若精度≥95%,则训练后的CNN模型直接作为改进的CNN模型;

若精度<95%,则调整超参数(调整卷积层层数),再次验证,直至训练后的CNN模型后的精度≥95%,则得到改进的CNN模型;

(2)将待测滚动轴承的原始振动信号输入到改进的CNN模型中进行故障诊断;并以Softmax分类器的输出每一行概率值最大的作为测试结果(故障类别)。

本发明改进的CNN算法具有更高的故障识别准确率和故障定位能力,通过将该算法应用于滚动轴承故障实验数据进行智能诊断,该数据来源于美国西储大学电气工程实验室,获得了高达99.04%故障识别准确率,相比于传统的基于手工特征提取的SVM,BP网络和DNN算法以及传统的CNN具有更高的准确率,同时在微小故障诊断方面该算法具有更优越的性能(微小故障数据更精细,更难手工提取特征,改进的CNN算法无需任何手工提取特征,优越性更强);改进的CNN模型相比其他算法具有更短的测试时间,通过混淆矩阵可直接量化故障误判的位置和数量。

表1

从表1可知,改进的CNN算法相比传统的全连接CNN算法性能得到明显提升。在测试准确率方面:改进的CNN算法准确率已达到99.04%,而传统的CNN算法准确率为98.75%;并且改进的CNN算法因为去除了全连接部分使模型参数量大量减少,其训练时间明显减少,这对本模型应用于故障的在线快速诊断和监测具有重要意义。

混淆矩阵为:

混淆矩阵中的横轴代表预测的轴承故障类别,纵轴代表真实故障类别,其中,对角线处的数值表示的是改进卷积神经网络在测试数据集每一次分类的正确率,非对角线位置表示该类别分类的错误率。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号