首页> 中国专利> 微创低应变瓣环成形术环

微创低应变瓣环成形术环

摘要

用于在二尖瓣瓣环处植入的微创瓣环成形术环。所述瓣环成形术环具有C形平面视图的内部核心部件,所述C形平面视图总体上限定具有长轴和短轴的椭圆形;并且关于所述短轴对称。被所述短轴平分的所述核心构件的后部的径向尺寸比终止于所述核心构件的前侧的一对自由端部区域更厚。径向厚度在所述后部与所述端部区域之间平滑过渡。所述内部核心构件可覆盖有织物,并且是超弹性金属,使得其可以被拉直并通过进入管递送。选择围绕所述核心构件的曲率和厚度,使得在被拉直时所经受的应变不超过7‑8%。

著录项

说明书

本申请要求2018年7月30日提交的名称为“MINIMALLY-INVASIVE LOW STRAINANNULOPLASTY RING”的美国临时申请序号62/711,949的权益,其整体内容通过引用并入本文。

技术领域

本发明总体上涉及心脏植入物,并且具体地涉及可以植入天然二尖瓣或三尖瓣心脏瓣环的微创瓣环成形术环。

背景技术

在脊椎动物中,心脏是中空的肌肉器官,具有四个泵送腔室:左心房和右心房以及左心室和右心室,每个都提供有其自身的单向阀。天然心脏瓣膜被确认为主动脉瓣、二尖瓣(mitral)(或二尖瓣(bicuspid))、三尖瓣和肺动脉瓣,并且各自被安装在包含直接或间接附接至心房和心室肌纤维的致密纤维环的瓣环中。每个瓣环都限定流动孔口。

假体瓣环成形术环用于修复或重建受损或患病的心脏瓣环。瓣环成形术环旨在支持心动周期中发生的功能性变化:维持接合和瓣膜完整性以防止逆流,同时在正向流动期间允许良好的血液动力学。瓣环成形术技术可以与其它修复技术结合使用。这些环部分地(C形)或完全地(D形)环绕并固定至瓣环,并且可以是刚性的、挠性的、或半挠性的。

尽管二尖瓣和三尖瓣修复可以成功地治疗患有瓣膜问题的多个患者,但目前使用的技术伴随明显的发病率和死亡率。大多数瓣膜修复和置换程序需要将患者的整个胸骨从顶部到底部分开,以进入患者的胸腔,以及使用心肺转流术。当前方法存在多种明显的缺点。

目前,心血管外科手术正朝向微创外科手术(MIS)迈进,这实质上意味着通过比传统外科手术暴露更小的暴露来执行程序,如瓣膜置换和修复。MIS程序总体上涉及局部胸骨切开术(其中仅胸骨的一部分被分开)或胸廓切开术(其中切口在肋骨之间产生)。特别是后一种情况,与完全直视程序相比,外科暴露非常有限并且提出一系列新的挑战。虽然外科医生已经非常熟练地通过这些小开口进行操作,并且存在外科器械和支撑装置促进这样的程序,但是需要对可以容易地通过这样的小开口插入的瓣环成形术环进行改编(适配,adaptations)。

所需要的是用于瓣环成形术环的装置和方法,该瓣环成形术环可以被配置以穿过小开口或管,同时保持预定的形状和期望量的刚性。

发明内容

本申请提供了用于在二尖瓣瓣环处植入的微创瓣环成形术环。瓣环成形术环具有C形平面视图的内部核心构件(inner core member)。核心构件的中部或后部的径向尺寸比终止于核心构件的前侧的一对自由端部区域更厚。径向厚度在后部与端部区域之间平滑过渡。内部核心构件是超弹性金属,使得其可以被拉直并通过进入管(access tube)来递送。选择围绕核心构件的曲率和厚度,使得在被拉直时所经受的应变不超过7-8%。

与当前的修复环相比,所公开的装置能够被弹性地拉直,使得其可以通过小的外科开口和/或管(如导管)来递送。所公开的瓣环成形术环具有使刚度最大化同时允许装置在递送期间被完全拉直的尺寸。更具体地,该环具有围绕其外围的匹配的半径和径向厚度,该半径和径向厚度在该环被拉直以用于MIS递送时协同导致镍钛诺的屈服应变以下的应变。

一个实施方式包括瓣环成形术环,其被具体设计成使得其可以从总体上“C”形的环暂时挠曲成线性形状,以穿过非常小的外科开口和/或管或导管。所公开的环利用了使用超弹性材料(如镍钛诺)可获得的大的弹性应变。

瓣环成形术环的示例性实施方式包括由外部覆盖物围绕的内部核心构件。内部核心构件由超弹性材料形成并限定在平面视图中的曲线形松弛的植入物形状,其具有跨过间隙间隔的两个自由端部和在其之间围绕核心构件的外围的不同曲率的至少两个区域。核心构件在每个区域中具有径向厚度,该径向厚度与此区域中的相应曲率配合,在该环被基本上拉直至超弹性材料的屈服应变以下时,限制超弹性材料内的应变。因此,瓣环成形术环可以暂时从其松弛形状挠曲成线性形状以穿过进入管或进入导管。超弹性材料可以是镍钛诺,并且屈服应变可以在约7-8%之间。在此实例中,当环被基本上拉直时,每个区域中的径向厚度与相应曲率配合,优选地导致在此区域中4-7%之间的应变。

瓣环成形术环优选地被塑形用于在天然二尖瓣瓣环处植入,并且核心构件具有开放的D形,其中后部通过一对侧面连接至包括两个自由端部的前部。可选地,核心构件被塑形用于在天然三尖瓣瓣环处植入。如果被塑形用于二尖瓣瓣环植入,则后部具有第一径向厚度t

通过参考说明书的其余部分和附图,对本发明的本质和优点的进一步理解将变得显而易见。

附图说明

图1是示例性瓣环成形术环的内部核心构件的后方立体图;

图2是图1中所示的内部核心构件的平面视图;

图3是图1的内部核心构件的前方立体图;

图4是从图1的内部核心构件的前侧看到的图1的内部核心构件的立面图;

图5是二尖瓣和相邻主动脉瓣的部分的示意图,其中标识了主要的解剖结构标志物;

图6是植入在二尖瓣瓣环处的示例性瓣环成形术环的平面视图;

图7是示例性瓣环成形术环在被拉直以通过进入管递送之后的立面图;

图8显示了位于进入管内的瓣环成形术环;和

图9显示了从进入管驱出的瓣环成形术环。

具体实施方式

本发明提供了适于植入在需要修复的天然二尖瓣或三尖瓣环处的瓣环成形术环。应理解,尽管显示并描述了二尖瓣瓣环成形术环,但是多种特征同样适用于三尖瓣瓣环成形术环;特别是围绕该环的期望曲率,其限制了在被拉直时在内部核心构件中产生的最大应变。

图1-4中示例了本申请的第一实施方式,其中二尖瓣瓣环成形术核心构件20限定了中部或后部22以及前部24,前部24具有跨过间隙G分开的自由端部24a、24b(图2)。按照惯例,二尖瓣瓣环成形术核心构件20在某种程度上类似于开放的椭圆形或开放的D形。在D形中,向外凸出的后部22形成曲线形侧面,然后自由端部24a、24b一起限定基本上直的前部,该基本上直的前部总体上在瓣环的连合部之间,或者可能在三角区之间延伸。

下文参考图6-9更详细描述的完全组装的瓣环成形术环28通常包括紧密围绕核心构件20的柔软的外部覆盖物26,用于通过缝合线或其它手段将该环附接至瓣环。核心构件20为环28提供了骨架,并且仅被与其形状共形的挠性的硅酮和/或织物覆盖。因此,将参考核心构件20的形状来描述环28的形状。

如图5中所示,从上方(或沿血流方向看)看到的二尖瓣MV包括后小叶PL和前小叶AL,后小叶PL围绕二尖瓣周长的大约三分之二,前小叶AL占瓣环周长的大约三分之一,两个小叶均附接在二尖瓣瓣环MA的外围处。这两个小叶的常规表示显示后小叶在前小叶下方,其在流动流中的接合线或接触线是微笑形曲线(smile-shaped curve)。每个小叶可以分成三个区域:前小叶AL分为三个部分:外侧三分之一(A1)、中间三分之一(A2)和内侧三分之一(A3),而二尖瓣后小叶PL具有外侧(P1)、中间(P2)和内侧扇形(P3)。两个小叶均在基部且也在末梢(tips)是厚的,中间变薄。二尖瓣连合部AC、PC限定不同的区域,在这些区域前小叶和后小叶在其对瓣环MA插入时汇合在一起——其可被概述为微笑形接合线的角。二尖瓣瓣环MA的前部附接至纤维三角区,并且总体上比后瓣环更抗撕裂并且拉伸或伸长的可能性更小。右纤维三角区RT是二尖瓣、三尖瓣、主动脉瓣AV的非冠状窦NCS与膜间隔之间的致密连结区域。左纤维三角区LT位于主动脉瓣和二尖瓣的两个左纤维边界的连结处。尽管三角区和连合部彼此靠近,但是其不在完全相同的位置。

在这一点上,为用于限定环形状的各个方向来定义坐标轴是有益的。关于所示例的环和其它非圆形或非平面的环的术语“轴线”、“流动轴线”、“垂直轴线”或“中心轴线”是指在平面视图(即,图2)中看到的总体上垂直于该环,穿过该环的面积形心的线。“轴向”或“轴线”方向也可被视为平行于瓣膜孔口内和因此当在其中植入时该环内的血液流动的方向。换言之,植入的瓣环成形术环关于中心流动轴线定向,该中心流动轴线沿通过二尖瓣瓣环的血液流动的平均方向对准。尽管本发明的环总体上是三维的并且呈马鞍形,但是其部分可以是平面的并且垂直于流动轴线。图1显示了示例性坐标轴,其中垂直为Z-轴,跨过核心构件20的宽尺寸的横向被指定为X轴,并且纵向对应于Y轴。总体上,核心构件20被布置成“在平面内(in-plane)”,这意味着虽然围绕流动轴线总体上呈曲线布置,但是核心轮廓可以是3D的,或者是除了完全平面以外的。“平面内弯矩(in-plane bending moment)”是关于流动轴线弯曲,或者换言之,使核心构件20在其主平面内弯曲的局部刚度。主要关注点在于何时将核心构件20从图2所示的其曲线形形状弯曲成基本上是直的,以用于通过进入管进行递送。更具体地,关注点在于确保材料的应变不超过阈值水平,以避免塑性改变核心构件的形状。

再次参考图1-4,核心构件20具有整体的马鞍形,其中后部22和前部24(由自由端部24a、24b限定)从其之间的左侧和右侧40向上升高。即,后部22升高至高度H,而前部24升高至高度h。尽管在自由端部24a和24b之间存在间隙,但是其总体上限定朝向彼此延伸的向上倾斜部(slopes),如图2的平面视图所示。最佳显示于图3和图4中的自由端部24a、24b的向上升高h对应于与主动脉瓣相邻的前瓣环,并且避免具有突出到左心室流出道的结构,该结构在左心室流出道处可阻止从主动脉瓣向外流动。这种形状还保留了二尖瓣的前小叶的天然马鞍形,从而减小收缩期间二尖瓣小叶上的应力。就两个高度h和H而言,核心构件20的前部24和后部22的相对高度在图4的前视图中最明显。优选地,高度H大于高度h。

参考图1、3和4,核心构件20的左侧和右侧40在轴向上位于低点,而后部22的中点在该侧上轴向地升高至高点,并且两个自由端部24a、24b向上升高至前部24上的轴向高点。图1显示了在核心构件20下方的二级图像,如同其安置在反射性参考平面上。侧面40显示在该参考平面上,而后部22和两个自由端部24a、24b在正Z方向上与其分离。在一个实施方式中,侧面40在共同参考平面中延伸短距离。可选地,核心构件20可以沿Z方向完全成曲线形而没有平面区段。

图2示例了处于松弛形状的在平面视图中(或在XY平面中)从上方的核心构件20,并且显示了多个尺寸特征,其使得核心构件能够在平面视图的平面中被拉直而不超过参考材料的屈服应变。首先,应注意,长轴50是垂直于短轴52,跨过核心构件20的宽尺寸绘制的。核心构件20期望地跨过短轴52对称,但是可以并入某些差异以适应特定的病理状况。即使两侧不相同,也可保持核心构件20周围的导致低应变的期望尺寸关系。垂直于长轴50和短轴52(如通过其交点)绘制的线平行于流动轴线、垂直轴线或中心轴线延伸,如上所述。拉直核心构件20所需的弯曲力主要关于中心轴线或至少关于平行于中心轴线的轴线施加。

核心构件20期望地由超弹性材料(如但不限于镍钛诺(NiTi)或类似的超弹性合金)制成。超弹性,有时被称为伪弹性,是对施加的应力的弹性(可逆)响应,其由晶体的奥氏体相和马氏体相之间的相变引起。更一般地,超弹性允许材料弯曲超过对特定类别的材料(如金属合金)的常规预期。

超弹性核心构件20以这种方式设计:使其从所示形状变形为完全线性形状不超过镍钛诺的大约7-8%之间的屈服应变。即,图2中所示的核心构件20具有后部22,后部22具有在标记为θ的弧内的第一曲率半径R和径向厚度t

对于曲线形梁的中性轴处的半径与被拉直时其将经受的最大应变之间的关系,可以使用以下方程式:

其中e是应变,并且l

l

将方程式2和3代入方程式1中得出当曲线形梁被拉直时最大应变的方程式:

其简化为:

因此,以下方程式分别与后部22和核心构件20的侧面40与自由端部24a、24b之间的薄区域54有关:

由于厚度的变化,后部22与侧面40之间的过渡区段56内的应变e

对于示例性24mm环——习惯上跨过核心构件20的内边缘之间的长轴50所测量的,弧θ(后部22)内的曲率半径R为约0.482英寸(12.24mm)。假设最大应变为7%,并且对厚度t

限定示例性核心构件20的有益方面的另一种方式是,任意位置处的平面内径向厚度取决于局部曲率半径。如所提到的,参见图2,由于曲率半径R相当大,因此后部22中的厚度t

然而,与此同时,核心构件20必须具有最小的体积,目的是为植入的瓣环成形术环提供刚性,从而确保瓣环的适当矫正或重塑。也就是说,具有小的径向厚度的纯挠性核心构件(如线材)在被拉直时将经受非常低的应变,但是也将不具有刚性使瓣环重塑——其将会太过松散。因此,在提供挠性使得能够拉直,同时对于重塑而言也要是半刚性的,在这之间存在权衡(trade-off)。核心构件越刚性,来自心脏跳动的植入后的应变或挠曲就越小。当然,外科医生在这方面有不同的偏好,但是大多数人认为可弯曲进行递送,然后呈现期望的瓣环重塑形状,植入挠曲最小的半刚性环是最佳的。

因此,在实践中,局部厚度/半径组合优选地产生小于但接近屈服应变的应变。因此,对于材料屈服应变在6-7%之间的镍钛诺环,使核心构件拉直的应变优选在3-6%之间,更优选在4-6%之间,并且最优选在5-6%之间。类似地,对于材料屈服应变在7-8%之间的镍钛诺环,使核心构件拉直的应变优选在4-7%之间,更优选在5-7%之间,并且最优选在6-7%之间。以下提供了24mm环超出7%应变的实例。对于5%的最大应变:t

进一步,相同的方程式和计算适用于限定马鞍形的沿Z方向的曲率,以确保其可沿Z方向被平整挠曲成直的构型以用于递送。例如,假设垂直尺寸的厚度与径向尺寸的厚度t

本文公开的MIS瓣环成形术环28的核心构件20可以用多种不同的方式制造,包括从片材激光切割或冲压(stamped)、由线材形成、从管材切割等。在沿Z方向的厚度以及马鞍形两者方面而言,这些方法中的任意种都可涉及后处理,如机械加工、磨削、和形状设定,以实现最终期望的构型。

如以下将清楚地看到的,核心构件20以及由此形成的环28的开放本质允许外科医生将该结构打开成伸长(拉直)的股线,以通过小管(如导管或套管)进行递送,如下文将描述的。瓣环成形术环28被推进至心脏中并从进入管驱出到二尖瓣瓣环MA(或者如所考虑到的三尖瓣瓣环)处的位置。核心构件20的超弹性材料的天然弹性使得该环能够从伸长的递送形状过渡至松弛的环形状,并因此与目标瓣环共形。

图6示例了围绕二尖瓣瓣环MA的瓣环成形术环28的最终植入位置。如上所提到的,柔软的外部覆盖物26紧密地围绕核心构件20。外部覆盖物26可以是简单的外科手术级织物,如聚对苯二甲酸乙二醇酯(PET,例如达可纶),或者可进一步在核心构件20与外部覆盖物26之间包括硅酮层。在常规植入中,使用穿过外部覆盖物26和相邻瓣环的缝合线将瓣环成形术环缝合就位。在MIS外科手术中,也可以使用缝合线,其通过机器人或以其它方式进行操纵,或者可以替代诸如夹具、U形钉等的替代物。本申请考虑了所有这些方法的使用。

二尖瓣瓣环成形术环28优选地包括两个连合部标记物60,该标记物帮助外科医生在二尖瓣瓣环MA周围的适当位置处记录(register)该环。可以在该环的后部22的中点处提供第三标记物62。这些标记物可以是成行的彩色线,而外部覆盖物26通常是白色织物。来自激光打印系统的油墨、调色剂或甚至是编织成布料的纱线也可以用作标记物,或者标记物可以是不透射线的夹具或是在荧光检查下从身体外部可见的针迹(针脚,stitch)。

如图6所示,示例性核心构件20的自由端部24a、24b延伸超过连合部标记物60,进入坚韧的纤维三角区RT、LT的区域中。在优选的实施方式中,自由端部24a、24b中的每一个延伸超过其相应的连合部标记物60(并且因此延伸超过天然连合部)约5-10mm之间的长度。

图7是示例性瓣环成形术环28在被拉直以通过进入管(未显示)递送之后的立面图。沿环28显示了较厚的后部22、较薄的端部区域54和过渡区段56。瓣环成形术环28可以通过多种技术拉直,如通过简单地使其成漏斗状(funneling)进入直的刚性管的一端,使得其在其进入时拉直,或在其被插入进入管之前通过弯曲器具拉直。

图8显示了已定位在进入管70内之后的瓣环成形术环28。环28显示具有小的剩余曲率,但是其可被进一步拉直以装配在内径刚好略微大于后部22的厚度t

图9显示了通过持续推进推动器管72而从进入管70驱出的瓣环成形术环28。当环28离开进入管70时,前导端部区域54立即恢复至其原始曲率。以这种方式,外科医生可以控制进入管70的位置并引导瓣环成形术环28正确放置到最终植入物位置,如图6所示。一旦被精确定位,就可以将锚定装置,如缝合线、夹具、U形钉等通过外部覆盖物26部署并进入周围的瓣环中。

尽管上文是对本发明的优选实施方式的完整描述,但是可以使用各种替代、修改和等同物。而且,将显而易见的是,可以在所附权利要求的范围内进行某些其它修改。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号