首页> 中国专利> 一种低压直流断路器机械故障诊断方法

一种低压直流断路器机械故障诊断方法

摘要

本公开揭示了一种低压直流断路器机械故障诊断方法,包括:模拟低压直流断路器多种常见的机械故障,采集断路器的分合闸线圈电流信号和机械振动信号,对采集到的信号进行预处理并提取特征参量。利用支持向量机算法进行建模并利用K‑Fold算法进行交叉验证得到各诊断模型的准确率。然后利用特征降维技术对提取的电流和振动信号的特征组合进行降维,最后得到的新的特征组合构建的诊断模型的准确率及稳定性,选取准确率最高的模型提供给机械故障诊断程序。本公开能够克服现有低压直流断路器机械故障诊断研究存在故障类型少、故障样本不足、特征单一、特征参数过多等问题,提高诊断精度和效率。

著录项

  • 公开/公告号CN112345213A

    专利类型发明专利

  • 公开/公告日2021-02-09

    原文格式PDF

  • 申请/专利权人 华能河南中原燃气发电有限公司;

    申请/专利号CN202010991497.3

  • 申请日2020-09-18

  • 分类号G01M13/00(20190101);G01R31/327(20060101);G06F30/27(20200101);G06K9/62(20060101);

  • 代理机构11760 北京前审知识产权代理有限公司;

  • 代理人张波涛;尹秀峰

  • 地址 463000 河南省驻马店市橡林乡周湾村

  • 入库时间 2023-06-19 09:51:02

说明书

技术领域

本公开属于电力设备技术领域,具体涉及一种低压直流断路器机械故障诊断方法。

技术背景

随着我国城镇化的加速发展,城市人口急剧增加,城市轨道交通的发展需求也随之增大。轨道交通机车采用直流电力牵引,其建设项目中平均每两公里需要建设一个直流牵引变电所。而每个直流牵引变电需要10~12个直流开关柜,每个直流开关柜含有一台低压直流断路器。因此,伴随城市轨道交通的发展,对直流断路器的需求日益增长。

根据已有开关事故的统计研究发现,机械故障占断路器总故障的60%以上,因此有必要开展断路器机械状态诊断技术的相关研究工作。分合闸线圈电流能够有效反映线圈控制回路电压、电阻以及电磁铁的运动状态;机械振动信号可以充分体现操作机构及传动机构动作碰撞信息,从而反映机械结构的状态。

目前,基于分合闸线圈电流的断路器机械状态诊断技术及基于振动信号的断路器机械状态诊断技术研究成果颇多,特征提取方法丰富,诊断分类效果较好,但存在故障类型单一、数据量不足、特征参数过多等问题。且目前研究的现有成果主要集中在交流断路器领域,针对低压直流断路器机械状态故障诊断技术的研究相对匮乏。

因此,对于可靠性要求高、建设需求日益增长的轨道交通直流牵引系统,研发一种基于电流和振动信号的低压直流断路器机械故障诊断方法,降低设备故障带来的损失,保证电力系统的可靠运行,具有重要意义。

发明内容

针对上述问题,本公开的目的在于提供一种基于电流和振动信号的低压直流断路器机械故障诊断方法,能够克服现有断路器机械故障诊断研究存在故障类型少、故障样本不足、特征单一、特征参数过多等问题,通过提取多种机械故障情况下的分合闸线圈电流和机械振动信号特征,利用支持向量机、特征降维等算法对机械故障进行高精度、高效率的诊断。

为实现上述目的,本公开提供以下技术方案:

一种低压直流断路器机械故障诊断方法,包括如下步骤:

S100:模拟低压直流断路器多种常见的机械故障,采集断路器的分合闸线圈电流信号和机械振动信号,对采集到的信号进行预处理并提取特征参量。

S200:利用支持向量机算法进行建模并利用K-Fold算法进行交叉验证得到各诊断模型的准确率。

S300:利用特征降维技术对提取的电流和振动信号的特征组合进行降维,最后得到的新的特征组合构建的诊断模型的准确率及稳定性,选取准确率最高的模型提供给机械故障诊断程序。

优选的,所述模拟的机械故障类型包括:线圈电压控制异常、线圈老化、分闸电磁铁铁芯间隙异常、分闸电磁铁卡涩、弹簧异常、轴断裂、轴承磨损。

优选的,所述分合闸线圈电流信号的特征参量集合为X=[I

优选的,所述机械振动信号的特征参量由短时能量和小波包节点频带能量的特征参量组成,提取断路器动作过程中关键点的能量值与时刻,合闸过程短时能量特征为Y=[E

优选的,所述步骤S100包括如下步骤:

S101:对电流信号进行平滑滤波预处理,对振动信号趋势项去除、小波去噪预处理,提高特征提取的效果。

S102:结合实际断路器操动机构机械运动对预处理后的电流和振动信号进行分析,找到反应机械状态特征的关键点并进行特征提取。

优选的,所述步骤S200包括如下步骤:

S201:利用支持向量机算法,将样本分为训练集和测试集,采用训练集的特征参数训练并生成诊断模型。

S202:采用交叉循环验证(K-Fold)算法来评估模型的性能。验证数据从训练数据划分,但不参与训练,可以相对客观的评估对训练集数据以外的样本分类效果。

优选的,所述步骤S201包括如下步骤:

S2011:机械故障诊断训练集及测试集样本数量以7∶3比例分割,提取各个样本的电流及振动信号特征,按照故障类型对各个样本提取的特征赋予标签;

S2012:选取C类支持向量机分类模型C-SVC,选择径向基核函数;对训练集样本进行测试,寻找惩罚因子C及核参数γ的最优参数,生成最优的诊断模型;

S2013:利用生成的SVC模型对测试集数据进行诊断可靠性测试验证;

S2014:计算分类精度,若精度不足,则重新提取特征;若精度足够,则输出诊断模型参数,用于后期故障诊断调用。

优选的,所述步骤S300包括如下步骤:

S301:运用Relief-F算法先选择出其中的敏感特征以降低处理过程的计算难度。

S302:采用PCA主成分分析算法进一步提取敏感特征,消除各特征之间的相关性,避免冗余。

优选的,所述步骤S302包括如下步骤:

S3021:首先将原始特征数据电流特征、短时能量特征、小波包特征用向量表示,所有的原始数据构成一个矩阵。

S3022:计算特征矩阵的协方差矩阵并求协方差矩阵的特征值及相应的正交化特征向量。

S3023:对协方差矩阵特征值进行从大到小排序,计算主成分的累积贡献率,当累积贡献率大于85%时,即可反映原始特征的信息,这几个较大的特征值即为主成分。

S3024:将主成分对应的特征向量按照特征值大小顺序组成映射矩阵并用映射矩阵对原始特征数据进行映射,实现特征降维。

相比于现有技术,本公开带来的有益效果为:

1、通过模拟多种低压直流断路器机械故障类型,克服了传统针对低压直流断路器研究故障类型少、故障样本不足的问题。

2、结合电流和振动信号,提取多种特征参量,并采用了特征降维算法,在解决特征单一问题的同时进行优化,避免特征冗余的问题,提高诊断效率和稳定性。

附图说明

图1是本公开一个实施例提供的一种基低压直流断路器机械故障诊断方法的流程图;

图2(a)至图2(c)是本公开一个实施例提供的所采集的分合闸线圈电流信号经过预处理之后的波形图,其中,图2(a)是合闸线圈电流信号,图2(b)是分闸线圈电流信号,图2(c)是振动信号;

图3是本公开一个实施例中合闸机械振动信号短时能量波形与电流波形图;

图4是本公开一个实施例中机械振动信号小波包变换重构信号;

图5是本公开一个实施例中低压直流断路器机械故障诊断模型结构示意图。

具体实施方式

下面结合附图1至图5和实施例对本公开的技术方案进行详细描述。

如图1所示,一个实施例中,一种低压直流断路器机械故障诊断方法,包括如下步骤:

S100:模拟低压直流断路器多种常见的机械故障,采集断路器的分合闸线圈电流信号和机械振动信号,对采集到的信号进行预处理并提取特征参量。

S200:利用支持向量机算法进行建模并利用K-Fold算法进行交叉验证得到各诊断模型的准确率。

S300:利用特征降维技术对提取的电流和振动信号的特征组合进行降维,最后得到的新的特征组合构建的诊断模型的准确率及稳定性,选取准确率最高的模型提供给机械故障诊断程序。

与现有断路器机械故障诊断研究存在故障类型少、故障样本不足、特征单一等问题、特征参数过多等问题不同,上述实施例通过提取多种机械故障情况下的分合闸线圈电流和机械振动信号特征,利用支持向量机、特征降维等算法对机械故障进行诊断,有利于简化模型,提高诊断效率和精度。

另一个实施例中,如图2(a)和图2(b)所示,所述分合闸线圈电流信号的特征参量集合为X=[I

本实施例中,图2(a)所示的合闸电流变化过程如下:线圈通电,由于电感性电路电流不能跃变,电流呈指数规律上升,铁芯的电磁吸力逐渐增大。当运动反电动势占主导地位时(A点),电流便开始减小。铁芯继续运动,当动静触头接触时(B点),铁芯受到极强的反作用力,铁芯速度快速减小。随后,铁芯在电磁力的作用下缓慢运动拉动连杆直至达到合闸锁扣状态,该过程阻碍电流增大的运动反电动势与电感的感应电动势之和基本不变,因此电流大小基本不变。合闸锁扣完成到达第二个谷点(C点),铁芯不再运动。之后,电流继续以指数规律上升至稳定值(D点)。图2(b)所示的分闸电流变化过程与合闸类似,因此,考虑到分合闸电流曲线与断路器动作过程的对应关系,形成了电流信号的特征参量。

另一个实施例中,如图2(c)所示,所述机械振动信号的特征参量由短时能量和小波包节点频带能量的特征参量组成,提取断路器动作过程中关键点的能量值与时刻,合闸过程短时能量特征为Y=[E

本实施例中,分别利用短时能量法与小波包分解频带能量分析法处理该机械振动信号,具体的:如图3所示,F点:动静触头碰撞,产生强烈振动,铁芯继续运动;G点:铁芯拉动连杆使连杆机构锁死,产生强烈振动,铁芯运动停止,合闸完成。选取关键点的能量值与时刻,形成机械振动信号短时能量特征参量。

图4为合闸振动信号小波包分解后第6层各节点振动信号重构波形图,能够体现原始振动信号在各个频带内的详细分布情况。选择db10小波作为母小波函数,并以Shannon熵为标准选取最优的小波包分解树型结构。对正常状态下的触头振动信号进行6层小波包频带能量分解,因此第6层各频带带宽为100/26=1.5625kHz。对第6层的前8个节点系数进行重构得到0~12.5kHz内各个频段的振动信号。

另一个实施例中,所述步骤S100包括如下步骤:

S101:对电流信号进行平滑滤波预处理,对振动信号趋势项去除、小波去噪预处理,提高特征提取的效果。

S102:结合实际断路器操动机构机械运动对预处理后的电流和振动信号进行分析,找到反应机械状态特征的关键点并进行特征提取。

另一个实施例中,所述步骤S200包括如下步骤:

S201:利用支持向量机算法,将样本分为训练集和测试集,采用训练集的特征参数训练并生成诊断模型。

S202:采用交叉循环验证(K-Fold)算法来评估模型的性能。验证数据从训练数据划分,但不参与训练,可以相对客观的评估对训练集数据以外的样本分类效果。

另一个实施例中,所述步骤S201包括如下步骤:

S2011:机械故障诊断训练集及测试集样本数量以7∶3比例分割,提取各个样本的电流及振动信号特征,按照故障类型对各个样本提取的特征赋予标签;

S2012:选取C类支持向量机分类模型C-SVC,选择径向基核函数;对训练集样本进行测试,寻找惩罚因子C及核参数γ的最优参数,生成最优的诊断模型;

S2013:利用生成的SVC模型对测试集数据进行诊断可靠性测试验证;

S2014:计算分类精度,若精度不足,则重新提取特征;若精度足够,则输出诊断模型参数,用于后期故障诊断调用。

另一个实施例中,所述步骤S300包括如下步骤:

S301:运用Relief-F算法先选择出其中的敏感特征以降低处理过程的计算难度。

S302:采用PCA主成分分析算法进一步提取敏感特征,消除各特征之间的相关性,避免冗余。

另一个实施例中,所述步骤S302包括如下步骤:

S3021:首先将原始特征数据电流特征、短时能量特征、小波包特征用向量表示,所有的原始数据构成一个矩阵。

S3022:计算特征矩阵的协方差矩阵并求协方差矩阵的特征值及相应的正交化特征向量。

S3023:对协方差矩阵特征值进行从大到小排序,计算主成分的累积贡献率,当累积贡献率大于85%时,即可反映原始特征的信息,这几个较大的特征值即为主成分。

S3024:将主成分对应的特征向量按照特征值大小顺序组成映射矩阵并用映射矩阵对原始特征数据进行映射,实现特征降维。

另一个实施例中本公开利用上述低压直流断路器机械故障诊断方法模拟线圈电压控制异常、线圈老化、分闸电磁铁铁芯间隙异常、分闸电磁铁卡涩、弹簧异常、轴断裂、轴承磨损等故障,采集故障及正常数据,故障诊断过程建模如图5所示。

以上实施例只是用于帮助理解本发明的核心思想,不能作为对本发明保护范围的限制;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上所作的任何改变,均视为不脱离本发明的保护范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号