首页> 中国专利> 具有最佳化场板设计的功率半导体装置

具有最佳化场板设计的功率半导体装置

摘要

公开了一种功率半导体装置及用于制造该功率半导体装置的方法。该装置包括源极接合垫与漏极接合垫、包括连接到漏极接合垫的漏极场板的漏极金属化结构以及包含连接到源极接合垫的源极场板的源极金属化结构。接合垫中的至少一者的至少一部分位于有源区域正上方。场板中的至少一者的尺寸根据相邻于所述场板的结构而变化。

著录项

  • 公开/公告号CN112204748A

    专利类型发明专利

  • 公开/公告日2021-01-08

    原文格式PDF

  • 申请/专利权人 硅尼克斯公司;

    申请/专利号CN201980015694.7

  • 申请日2019-02-27

  • 分类号H01L29/40(20060101);H01L23/00(20060101);H01L23/482(20060101);H01L29/06(20060101);

  • 代理机构72002 永新专利商标代理有限公司;

  • 代理人蔡洪贵

  • 地址 美国加利福尼亚

  • 入库时间 2023-06-19 09:29:07

说明书

关联申请的交叉引用

本申请要求于2018年2月27日提交的美国非临时申请No.15/906,698的权益,其全部内容通过引用被并入本文中。

技术领域

本发明涉及一种功率半导体装置,例如异质结构AlGaN/GaN高电子迁移率的晶体管或整流器,其具有在有源区域上的接合垫(BPOA)布置以及最佳化的场板设计。

背景技术

功率半导体装置是例如作为在功率电子器件中的开关或整流器使用的一种半导体装置,例如被用作用于马达控制的DC到AC变流器或用于切换模式的动力供应的DC到DC转换器。功率半导体装置通常用在“换向模式(commutation mode)”中,即它接通或断开,并且因此具有对于该使用最佳化的设计。

硅双极结晶体管BJT(Silicon bipolar junction transistor)、金属氧化物半导体场效应晶体管MOSFET(Metal-Oxide-Semiconductor field effect transistor)与绝缘栅双极晶体管IGBT(insulated gate bipolar transistor)是常见类型的功率半导体切换装置。它们的应用领域范围为不限于从便携式消费电子产品、家用电器、电动车、马达控制与动力供应到射频(RF)与微波电路以及电信系统。

在过去十年,氮化镓(GaN)已经逐渐被视为用在功率装置的领域的一种非常有前景的材料,其具有导致提高功率密度、降低接通电阻与高频响应的潜力。如果与具有相同的击穿电压的硅基装置进行比较,那么该材料的宽带间隙Eg=3.39eV造成高的临界电场Ec=3.3MV/cm,其可导致装置的设计具有较短的漂移区域,并且因此具有较低的接通状态电阻【参见U.K.Mishra等人的GaN-Based RF power devices and amplifiers(GaN基RF功率装置与放大器),IEEE期刊,第96册,第2号,第287-305页,2008年】。AlGaN/GaN异质结构的使用也允许二维电子气体2DEG(two-dimensional electron gas)形成在载体可达到非常高的移动能力μ=2000cm

如在图1、2、3A、4A与5A中所示,在有源区域上的接合垫(BPOA)布置已经被提议为可改善在侧向AlGaN/GaN异质结构装置中的电流密度的设计特征,并且显示用于该结构的竞争性的开状态与关状态的特性的研究可见于文献中。

通过示例,图1示意性地显示了具有交叉指件几何形状的说明性的BPOA布置的三维的立体图。在图1所示的方位中,x指示显示宽度,y指示显示高度,并且z指示显示深度。图1是一种说明性的设计,其显示了为AlGaN 1的III-V半导体的表面、源极接合垫SBP的源极垫金属2、标示为FS的源极场板、源极场板FS的源极/门极指件金属化部3(也称为“源极金属化”)、漏极接合垫DBP的漏极垫金属4、标示为FD的漏极场板、漏极场板FD的漏极指件金属化部5(也称为“漏极金属化部”)以及SiO

用于源极垫金属2的可接受材料包括但不限于铝(A1)。用于漏极垫金属4的可接受材料包括但不限于铝(A1)。用于源极场板FS与源极金属化部3的可接受材料包括但不限于氮化钛(TiN)与铝(A1)。用于漏极场板FD与漏极金属化部5的可接受材料包括但不限于氮化钛(TiN)与铝(A1)。

图2示意性地显示具有交叉指件几何形状的一种半导体装置100的BPOA布置的俯视图。在图2中也标示出了在图3A、4A、5A与6中所示的横截面,其进一步描述于下文。每个源极指件金属化部3包括以下区段:定位在有源区域上方的源极垫(SPOA,source pad overactive area)处的区段,其具有标示为ss1的尺寸;定位于有源区域上方的无垫(NPOA,nopad over active area)处的区段,其具有标示为ns1的尺寸;以及定位于有源区域上方的漏极垫(DPOA,drain pad over active area)处的区段,其具有标示为ds1的尺寸。

观察BPOA布置的性能,并且尤其是BPOA设计的可靠度,揭示出注意力应集中在当该装置在关断状态被偏压时在金属化间的介电质(例如SiO

作为示例,如图2、3、4与5所看出的,在半导体装置的不同区段之间可具有区别。这些区别如下:

图3A-在有源区域上方无垫(NPOA);

图4A-在有源区域上方的源极垫(SPOA);

图5A-在有源区域上方的漏极垫(DPOA)。

图3A、4A与5A显示了如从图2的顶部所示的在指出的定位与位置处的一种说明性的现有技术的装置的指定的横截面。如下所述,针对这三个区段中的每者,以施加到该装置的漏极端子的断开状态的偏压模拟了在介电质中的电场。

图3A、4A与5A概括地显示了一种现有技术的BPOA半导体装置的配置,该BPOA半导体装置具有基板9、在基板9上的缓冲层8、在缓冲层8上的GaN层7与在GaN层7上的AlGaN层1。门极端子10设置为包含高度P掺杂的GaN盖11,其定位于AlGaN层1上方。表面钝化介电质15覆盖门极10并且定位于源极端子13与漏极端子14之间,源极端子13延伸自定位于源极金属化部3下方的第一转接件12,漏极端子14延伸自定位于漏极金属化部5下方的第二转接件12。金属化间介电质或钝化介电质层6(如SiO

用于金属化间介电质或钝化介电质层6的可接受材料包括但不限于二氧化硅(SiO

图3A示意性显示了在现有技术的说明性的装置的在有源区域上方无垫(NPOA)的区段中并且从图2所示出的区域取得的横截面。图3A显示了具有标示为ns1’(其为图2所示的部分ns1)的尺寸的源极金属化部3的一部分以及具有标示为nd1’(其为在图2所示的一部分nd1)的尺寸的漏极金属化部5的一部分。尺寸nd1’对应于在图2的半导体装置的NPOA部分中的源极金属化部3的一部分的区域。尺寸nd1’对应于在图2的半导体装置的NPOA部分中的漏极金属化部5的一部分的区域。在图3A、4A与5A所示的特定材料(如SiO

图4A示意性地显示了在一种现有技术的装置的有源区域上的源极垫SPOA区段中并且从图2所示出的区域取得的横截面。图4A显示了具有标示为ss1’(其为图2所示的一部分ss1)的尺寸的源极金属化部3的一部分以及具有标示为sd1’(其为图2所示的一部分sd1)的尺寸的漏极金属化部5的一部分。尺寸ss1’对应于在图2的半导体装置的SPOA部分中的源极金属化部3的一部分的区域。尺寸sd1’对应于在图2的半导体装置的SPOA部分中的漏极金属化部5的一部分的区域。图4A也显示了在该装置的顶部处的源极垫金属2。

图5A示意性显示了在一种现有技术的装置的在有源区域上的漏极垫DPOA区段中并且从图2所示出的区域取得的横截面。图4A显示了具有标示为ds1’(其为在图2所示的一部分ds1)的尺寸的源极金属化部3的一部分以及具有标示为dd1’(其为在图2所示的一部分dd1)的尺寸的漏极金属化部5的一部分。尺寸ds1’对应于在图2的半导体装置的SPOA部分中的源极金属化部3的一部分的区域。尺寸dd1’对应于在图2的半导体装置的SPOA部分中的漏极金属化部5的一部分的区域。图5A也显示了在该装置的顶部处的漏极垫金属4。

如图2、3A、4A与5A所示,源极金属化指件3的每者与漏极金属化指件5的每者沿着其整个长度具有实质相同的宽度,不论其是否在NPOA区域(对应于尺寸ns1与nd1)、SPOA区域(对应于尺寸ss1与sd1)或DPOA区域(对应于尺寸ds1与dd1)中。注意到的是,在如图2、3A、4A与5A所示的已知的构造中,以下的尺寸条件适用:

ns1=ss1=ds1

nd1=sd1=dd1

观察图2、3A、4A与5A的设计,明显的是,电势的分布在有源区域由接合垫覆盖处的区域中显著改变。这影响在电场峰值出现在结构中的位置。观察到的电场峰值的变化是主要有关于在装置中的介电质层(如在图3A、4A与5A的层6)而不是半导体层的一个因素,但是在该半导体层的表面处的场分布上同样有小的影响。

绝对电场轮廓线是针对在结构中所关注的不同位置(NPOA、SPOA与DPOA)中的横截面而描绘。以下是说明性的示例。

图3A与3B分别显示了在图示结构的NPOA区域处在SiO

图4A与4B分别显示了在图示结构的SPOA区域处在SiO

图5A与5B分别显示了在图示结构的DPOA区域处在SiO

关注的主要区域可识别在这些绘图中,关于NPOA区段如图3A与3B所示,关于SPOA区段如图4A与4B所示,并且关于DPOA区段如图5A与5B所示。在源极垫(SPOA)与漏极垫(DPOA)覆盖区域中所产生的峰值比在没有垫覆盖(NPOA)的区域中所观察到的峰值高许多。与在NPOA区段中观察到的最大值5.7MV/cm形成比较,在DPOA区段观察到的最大值为7.0MV/cm,并且在SPOA区段中观察到的最大值为6.1MV/cm。

因此已经观察到的是,在介电质层与半导体的表面所观察到的最大电场峰值可根据装置的受研究的区段而变化。

进一步地,已经发现,由于在该装置的有源区域上的垫的放置,高电场可能存在于z维度中。这些位置无法使用标准2D横截面模拟模型而被模型化,并且因此应用3D TCAD模拟来识别临界区域。图6示意性地显示了用于图2的说明性的现有技术的装置沿着指件金属化部方向的横截面。识别为BPOA结构的可能关注的一个点是在源极接触垫的边缘处,参见图6中的P5。类似的峰值可在漏极接触垫边缘处被观察到。

BPOA布置可能导致可靠度的问题,其中,随时间变化的介电质击穿(TDDB)是尤其在长期操作、高电场操作与高温操作期间的重大关注。

该关注出现是因为,与在有源区域上方不具有垫的传统的指件结构交叉结构相比,在有源区域上方的接合垫改变了当被偏压时电势在结构中的分布方式。高电场不会仅伤害半导体而且有害于所使用的金属化间的介电质层,并且可能导致可靠度问题,如TDDB。

为了降低针对于TDDB的风险,在介电质层中的电场峰值必须通过在本文所公开的智能场板设计而被最小化。

本发明针对于替代的结构与方法,其针对于使在介电质内与在半导体装置的表面处两者的电场峰值变小。

在另一方面,电场峰值在该半导体装置的第三维(z方向)中在介电质层内被最小化。

本发明的数个方面基于根据是否没有垫在场板正上方、或是否低电压的源极垫放置在其上方、或高电压的漏极垫放置在其上方来重新最佳化并且因此改变场板的尺寸(如在x或z方向中的尺寸)。

发明内容

公开了一种功率半导体装置及用于制造功率半导体装置的方法。该装置是包括:源极接合垫与漏极接合垫、包括连接到漏极接合垫的漏极场板的漏极金属化结构、及包含连接到源极接合垫的源极场板的源极金属化结构。该接合垫中的至少一者的至少一部分位于有源区域正上方。场板中的至少一者的尺寸根据相邻该场板的结构而变化。相邻该场板的结构可为在特定位置处定位在该场板上方的接合垫。

在本发明的又一方面,一种半导体装置包含:源极接合垫;漏极接合垫;包含漏极场板的漏极金属化结构;及包含源极场板的源极金属化结构。该接合垫中的至少一者的至少一部分位于该装置的有源区域的正上方。该场板中的至少一者的尺寸根据相邻结构而变化。

在本发明的再一方面,提供一种半导体装置。该半导体装置的第一部分包含在有源区域上方的源极垫并且包括源极垫金属。该半导体装置的第二部分在有源区域上方不包含垫。该半导体装置的第三部分包含在有源区域上方的漏极垫并且包括漏极垫金属。源极金属化场板具有定位于该半导体装置的第一、第二与第三部分中的部分。该源极金属化场板具有定位于半导体装置的该部分中的至少一者中的尺寸,其不同于定位于该半导体装置的其它部分中的至少一者中的尺寸。漏极金属化场板具有定位于该半导体装置的第一、第二与第三部分中的部分。该漏极金属化场板具有定位于半导体装置的部分中的至少一者中的尺寸,其不同于定位于该半导体装置的其它部分中的至少一者中的尺寸。

在本发明的另一方面,提供了一种具有BPOA布置的半导体装置,其包含:源极接合垫与漏极接合垫、包含连接到该漏极接合垫的漏极场板的漏极金属化结构、以及包含连接到该源极接合垫的源极场板的源极金属化结构。接合垫中的至少一者的至少一部分是位于该装置的有源区域正上方。场板中的至少一者的尺寸根据相邻该场板的结构而变化。

在本发明的另一方面,提供了一种具有BPOA布置的半导体装置,其中,场板设置成具有金属化指件。金属化指件的尺寸具有尺寸变化的部分,该尺寸的变化相关于那些部分是否在该装置的有源区域上方无垫(NPOA)、在有源区域上方有源极垫(SPOA)或在有源区域上有漏极垫(DPOA)。

根据本发明的另一方面,提供了一种异质结构III-V半导体基的装置(例如III氮化物基的装置),其具有在至少一个有源区域上方的至少一个接合垫。场板的在有源区域中的部分(例如场板的包含金属化的指件结构的部分)在该至少一个接合垫下方的区域中与在该区域上方没有垫的区域中相比具有不同的尺寸,使得至少一个电场峰值在介电质层中比应用了相同的场板设计的情况降低,无关于在有源区域中的交叉指状结构上方是否存在接合垫。

在本发明的再一方面,提供了一种用于降低在半导体装置内的电场强度的方法。该方法包含:制造金属场板,每个金属场板具有至少一个尺寸,其基于金属场板在该装置内的位置以及在特定位置处该装置的相邻于金属场板的对应结构而变化。

在本发明的又一方面,提供一种具有BPOA布置的半导体装置,其包括在接合垫的内边缘上方并且延伸超过接合垫的内边缘的场板。

在本发明的再一方面,提供一种半导体装置,其包括漏极垫金属、与定位于该漏极垫金属正上方的漏极垫场板。该漏极垫场板具有延伸超过该漏极垫金属的内边缘的延伸部分。提供源极垫金属。源极垫场板定位于源极垫金属正上方。该源极垫场板具有延伸超过源极垫金属的内边缘的延伸部分。

附图说明

在附图中通过示例而不是通过限制说明了本发明的实施例,并且在附图中,同样的参考数字表示类似的元件。

图1显示一种现有技术的半导体装置的立体图。

图2显示具有BPOA布置的一种现有技术的半导体装置的俯视图。

图3A显示图2的装置沿着图2的指定区域所取得的横截面。

图3B显示在图3A的结构内的绝对电场的绘图。

图4A显示图2的装置沿着图2的指定区域所取得的横截面。

图4B显示在图4B的结构内的绝对电场的绘图。

图5A显示图2的装置沿着图2的指定区域所取得的横截面。

图5B显示在图5A的结构内的绝对电场的绘图。

图6显示图2的装置沿着图2的指定区域所取得的横截面。

图7显示具有BPOA布置的根据本发明的一种半导体装置的一个实施例的俯视图。

图8A显示图7的实施例沿着图7的指定区域所取得的横截面。

图8B显示在图8A的结构内的绝对电场的绘图。

图9A显示图7的实施例的第二横截面,具有关联于的标示的测量的特定点。

图9B显示在图9A的结构内的绝对电场的绘图。

图10A显示图7的一种半导体装置的实施例的第三横截面,具有关联于标示的测量的特定点。

图10B显示在图10A的结构内的绝对电场的绘图。

图11显示一种半导体装置的一个实施例的俯视图,该半导体装置具有倾斜的侧边与变化的尺寸的源极指件金属化部与漏极指件金属化部。

图12显示一种半导体装置的一个实施例的俯视图,该半导体装置在接合垫边缘处具有场板。

图13显示图12的实施例的横截面。

图14A显示关联于在图12所示的实施例的计算机模型化的立体图与横截面图。

图14B显示在图12所示的计算机模型化的附加视图。

图14C显示在图12的结构内的绝对电场的绘图。

图15是根据本发明的一种用于形成半导体装置的说明性的制造方法的流程图。

具体实施方式

本文所提出的说明书使得本领域技术人员能够完成并且利用陈述的所述实施例。然而,对于本领域技术人员而言,各种修改、等效物、变化、组合与替代将仍然容易显而易见。任何与所有的这些修改、变化、等效物、组合与替代意图落入由权利要求书所限定的本发明的精神与范围内。

在下面的说明书中使用了某些术语,仅为了方便而不是限制。词“右”、“左”、“顶”与“底”表示在附图中所参考的方向。如在权利要求书与在说明书的对应部分中所使用的词“一”和“一个”定义为包括一个或多个所提及的项目,除非具体地另外指出。此术语包括以上明确提及的词、其衍生字词与类似含义的词。跟随在一系列的二个或多个项目(例如“A、B或C”)之后的术语“至少一”意指A、B或C的任一者以及其任何组合。

本文公开了具有在有源区域上的接合垫(BPOA)布置的功率半导体装置的实施例。提供场板构造,其构成以降低电场峰值,以在装置在关断状态、在高电场下操作时保护金属化间介电质或钝化介电质与半导体表面。在一个实施例中,一种功率半导体装置具有在上方的可变的最佳化的场板结构,下方具有有源区域。在另一个实施例中,场板被附加在接合垫边缘的内部部分上方并且延伸超过接合垫边缘的内部部分,用以降低在这些位置处所观察到的电场。

图7示意性显示本发明的一个实施例的俯视图,显示具有BP0A布置的一种功率半导体装置200。源极场板FS’制造为具有源极指件金属化部3’,并且漏极场板FD’制造为具有漏极指件金属化部5’。

源极指件金属化部3’具有在源极接合垫SBP’的源极垫金属2’下方的第一部分101(SPOA区段)、在其上不具有垫(具有无垫)的第二部分102(不在源极垫金属2’或者漏极接合垫DBP’的漏极垫金属4’的下方)(NPOA区段)以及在漏极垫金属4’下方的第三部分103(DPOA区段)。漏极指件金属化部5’具有在漏极垫金属4’下方的第一部分201(DPOA区域或区段)、在其上不具有垫的第二部分202(不在漏极垫金属4’或源极垫金属2’下)(NPOA区域或区段)、与在源极垫金属2’下方的第三部分203(SPOA区域或区段)。

根据该部分相较于装置的相邻结构的位置,指件金属化部的不同部分的尺寸可沿着每个该指件金属化部的长度变化。指件金属化部的部分或区段的尺寸可考虑为面积、长度、宽度、厚度或高度、体积或这些参数中的任一者的任何组合。

如在图7中所示,当该场板正上方的结构为某种型式时,场板的指件金属化部的尺寸(在此示例中为沿x方向的宽度)是固定的。同时,当不同结构(例如:不同的垫结构,如在SPOA区域中的源极垫金属、或在DPOA区域中的漏极垫金属)在特定场板结构上方或不在其上方(如在NPOA区域中)时,指件金属化部的尺寸可以不同或变化。

在图7所示的示例中,源极金属场板FS’的源极指件金属化部3’的尺寸具有当该场板在源极接合垫下方时的一定尺寸值(例如特定宽度)、当在无接合垫下方时的较小尺寸值(例如较小相对宽度)以及当在漏极接合垫下方时的更小尺寸值(例如最小相对宽度)。同样地,在图7中所示的示例中,漏极金属场板FD’的漏极指件金属化部5’的尺寸具有当该场板在漏极接合垫下方时的一定尺寸值(例如特定宽度)、当在无接合垫下方时的较小值(例如较小相对宽度)、以及当在源极接合垫下方时的更小值(例如最小相对宽度)。图7也显示了用于下面进一步论述的在图8A、9A与10A中所示的视图的横截面切割线。

如在图7中所示,源极指件金属化部3’的第一部分101具有一定尺寸(ss1i),其大于第二部分102的尺寸(ns1i)。源极指件金属化部3’的第一部分101也具有一定尺寸(ss1i),其大于第三部分103的尺寸(ds1i)。第二部分102具有一定尺寸(ns1i),其大于第三部分103的尺寸(ds1i)。因此,第一部分101的尺寸>第二部分102的尺寸>第三部分103的尺寸。因此,在图示的示例中,ss1i>ns1i>ds1i。

在图7中所示的实施例中,漏极指件金属化部5’的第一部分201具有一定尺寸(dd1i),其大于第二部分202的尺寸(nd1i)。漏极指件金属化部5’的第一部分201具有一定尺寸(dd1i),其也大于第三部分203的尺寸(sd1i)。第二部分202具有一定尺寸(nd1i),其大于第三部分203的尺寸(sd1i)。因此,第一部分201的尺寸>第二部分202的尺寸>第三部分203的尺寸。由此,在图示的示例中,dd1i>nd1i>dd1i。

应指明的是,尺寸ss1i,ns1i和ds1i可以不同方式变化,使得ss1i≠ns1i≠ds1i,并且尺寸dd1i,nd1i和dd1i可用不同方式变化,使得dd1i≠nd1i≠dd1i。

图8A、9A与10A概括显示根据本发明的教导的一种BPOA半导体装置的配置,其具有基板9’、在基板9’上方的缓冲层8’、在缓冲层8’上方的GaN层7’与在GaN层7’上方的AlGaN层1’。门极端子10’设置为包含高度p掺杂的GaN盖11’,其定位于AlGaN层1’上方。表面钝化介电质15’覆盖门极10’并且定位于源极端子13’与漏极端子14’之间,源极端子13’自定位于源极金属化部3’下方的第一转接件12’延伸,漏极端子14’自定位于漏极金属化部5’下方的第二转接件12’延伸。金属化间介电质或钝化介电质层6’(例如SiO

图8A与8B、图9A与9B以及图10A与10B示出了根据本文的教导在源极与漏极金属化场板结构被最佳化后的设计与相应的结果。以与通过上文所分析及论述的说明性的现有技术的装置所得到的、在图3A与3B、图4A与4B以及图5A与5B中的结果进行比较。

图8A显示沿着图7指示的横截面区域取得的如图7所示的具有BPOA布置的功率半导体装置的NPOA区域的横截面图。NPOA区段对应于源极指件金属化部3’的第二部分102与漏极指件金属化部5’的第二部分202。在此NPOA区域横截面中,源极场板FS在源极指件金属化部3处具有尺寸ns1i’(其对应于在图7所示的一部分ns1i),并且漏极场板在漏极指件金属化部5处具有尺寸nd1i’(其对应于在图7所示的一部分nd1i)。

如在图8A中所示,在结构中的各种点被识别为P1、P2、P3与P4。图8B显示在图8A所示的装置的结构的NPOA区段中的点P1、P2、P3、P4处在SiO

图9A显示如图7所示的装置的一个实施例,其包括SPOA区域的横截面。如在图9A中所示,上源极垫金属2’定位于包括源极金属化部3’的源极场板FS’上方,并且转接件12’设置在源极垫金属2’与源极金属化部3’之间。源极场板FS’制造为具有源极指件金属化部3’,并且漏极场板FD’制造为具有漏极指件金属化部5’。SPOA区段对应于源极指件金属化部3’的第一部分101与漏极指件金属化部5’的第三部分203。在该SPOA区域横截面中,源极场板FS’在源极指件金属化部3’处具有尺寸ss1i’(其对应于在图7中所示的部分ss1i),并且漏极场板在漏极指件金属化部5’处具有尺寸sd1i’(其对应于在图7所示的部分sd1i)。

尺寸ss1i可为不同于尺寸ns1i,并且尺寸sd1i可不同于尺寸nd1i。例如,在SPOA区段的图示的示例中,至少源极指件金属化部3’的区段101的宽度大于源极指件金属化部3’的区段102的宽度。在该例子中,尺寸ss1i>尺寸ns1i。在SPOA区段的图示的示例中,至少漏极指件金属化部5’的区段202的宽度大于漏极指件金属化部5’的区段203的宽度。在该例子中,尺寸nd1i>尺寸sd1i。

如图9A所示,在结构中的各种点被识别为P1、P2、P3与P4。图9B显示出用于图9A的装置的结构的SPOA区段中的点P1、P2、P3与P4处在SiO

图10A显示出根据图7的装置的一个实施例,其包括DPOA区域的横截面。如图10A所示,上漏极垫金属4’定位于漏极金属化部5’上方,并且转接件12’设置在漏极垫金属4’与漏极金属化部5’之间。场板FS’制造为具有源极指件金属化部3’,并且另一场板FD’制造为具有漏极指件金属化部5’。DPOA区段对应于源极指件金属化部3’的第三部分103与漏极指件金属化部5’的第一部分201。在该SPOA区域横截面中,源极场板在源极指件金属化部3’处具有尺寸ds1i’(其对应于图7所示的部分ds1i)并且漏极场板在漏极指件金属化部5’处具有尺寸dd1i’(其对应于在图7所示的部分dd1i)。

尺寸ds1i可为不同于尺寸ns1i和/或ss1i。例如,在DPOA区段的图示的示例中,至少该源极指件金属化部3’的区段103的宽度小于源极指件金属化部3’的区段102的宽度,并且小于源极指件金属化部3’的区段101的宽度。在该例子中,尺寸ss1i>尺寸ns1i>尺寸ds1i。

尺寸dd1i可不同于尺寸nd1i和/或sd1i。例如,在DPOA区段的图示的示例中,至少该漏极指件金属化部5’的区段201的宽度大于漏极指件金属化部5’的区段202的宽度,并且大于源极指件金属化部5’的区段203的宽度。在该例子中,尺寸dd1i>尺寸nd1i>尺寸sd1i。

如图10A所示,在结构中的各种点被识别为P1、P2、P3与P4。图10B显示在用于运用本文所述的场板结构的装置的结构的DPOA区段中在点P1、P2、P3与P4处在SiO

假设高电压垫漏极与低电压垫源极均放置在有源区域上方,那么在如先前所识别的功率半导体装置的所有三个不同区段(NPOA、SPOA、DPOA)中的金属化间介电质中所观察到的电场峰值的降低可根据在本文所公开的配置实现。

例如,比较如图3A所示的现有技术的NPOA区段的测量的电场峰值和如图8A所示的根据本发明的教导的装置的电场峰值显示了在电场峰值中的降低。如在图3B与8B的绘示的测量所示,关于点P2绘示的测量显示电场峰值从5.6MV/cm降低到3.5MV/cm。点P3的绘示的测量显示在电场峰值中的降低为从5.7MV/cm到4.1MV/cm。点P4绘示的测量显示在电场峰值中的降低为从2.7MV/cm到2.4MV/cm。

比较如图4A所示的现有技术的SPOA区段的测量的电场峰值和如图9A所示的根据本发明的教导的装置的电场峰值显示了在电场峰值中的降低。如在图4B与9B的绘示的测量所示,关于点P2的绘示的测量显示在电场峰值中的降低为从6.0MV/cm到4.0MV/cm。点P3绘示的测量显示在电场峰值中的降低为从5.0MV/cm到3.2MV/cm。

比较如图5A所示的现有技术的DPOA区段的测量的电场峰值和如图10A所示的根据本发明的教导的装置的电场峰值显示了在电场峰值中的降低。如在图5B与10B绘示的测量所示,关于点P2绘示的测量显示在电场峰值中的降低为从5.2MV/cm到3.2MV/cm。点P3绘示的测量显示在电场峰值中的降低为从6.4MV/cm到5.1MV/cm。

图11示意性地显示根据半导体装置300的另一实施例的一种BPOA布置的俯视图。图11类似于图7,除了在图11的实施例中,尺寸(例如场板的指件金属化部的宽度)连续变化,使得指件金属化部的侧部从在源极接合垫的相应源极金属或漏极接合垫的漏极金属下方的较大尺寸部分301到在源极金属与漏极金属垫NPOA区段之间的中间尺寸部分302到在相对的各个源极金属或漏极金属垫下方的进一步更小尺寸部分303渐缩、成角度或倾斜,视情况而定。如所显示,场板从区段301渐缩,继续渐缩通过区段302,并且继续渐缩通过区段303,使得宽度(以及因此为尺寸)根据场板是否在源极接合垫、漏极接合垫下方或无接合垫而不同。

图12与13显示了半导体装置400的一个实施例,其具有的场板延伸超过内部接合垫边缘,其中,场板位于接合垫上方。如在图12所示,在装置的不同区域中的指件金属化部的尺寸无须变化。图13示意性地显示沿着在图12所示的装置的指定区域而取得的横截面。根据该实施例,源极场板17”与漏极场板18”位于接合垫2”、4”上方。源极场板17”与漏极场板18”的内部部分30、31也延伸超过接合垫2”、4”的内部边缘部分40、41,如图13所示。如图12与13所示的源极场板17”与漏极场板18”的延伸与定位降低了在漏极垫边缘处(如在图13中所示出的P5处)的电场峰值。

图14A、14B与14C显示出图12与13的实施例的计算机模型化,其示出了一种具有场板的BPOA结构,该场板定位于接合垫上方、并且朝内延伸超过接合垫。在图14A所示的图示显示了在接合垫2”、4”上方、定位该源极场板17”与漏极场板18”的开放区域。这种配置进一步降低了在漏极垫边缘处(如在图14A所指出的位置P6处)的电场峰值。图14B显示了就位的源极场板17”与漏极场板18”以及接合垫2”、4”。

图14C显示了当场板结构如在例如图12与13所示被使用时,该场板如何降低在垫边缘处所获得的最大电场。绘示的数据比较了现有技术的BPOA装置和根据本发明的如同在图12与13的BPOA装置。通过使用垫边缘场板,实现了在漏极垫与源极垫二者的边缘处所观察到的电场峰值的降低,如例如在图14C所示。在类似于图13的P5的位置处所分析的说明性的装置中观察到了4MV/cm的最大绝对电场水平。如图14C所示,采用如本文所提出的被最佳化的场板,在图13的位置P5处获得了35%的电场峰值的降低。

还提出了一种制造功率半导体的方法,其显示在图15的流程图中。概括而言,如在本发明中的一种BPOA半导体装置通过金属有机化学气相沉积(MOCVD)方法的制造方法,用于在基板9上方形成缓冲层8、GaN层7、AlGaN层1与pGaN层11。pGaN区域通过平版印刷术与蚀刻方法形成。钝化介电质15通过化学气相沉积(CVD)形成。论述的金属层通过平版印刷术、金属/介电质沉积与蚀刻顺序形成。理解的是,前述的形成方法可在制造过程期间以任何可接受的顺序发生,并且不受限于特定的顺序。

虽然本发明的特征与元件以特定组合描述于示例的实施例中,但是每个特征可在没有该示例的实施例的其它特征与元件的情况下单独被使用,或与本发明的其它特征与元件各种组合被使用或者不与其组合被使用。在部件或零件的形式与比例中以及在等效物的替代中的变化可以在不脱离本发明的精神或范畴的情况下根据环境建议或者权宜之计而考虑。

为了图示和描述的目的提出了前述的说明(具体实施方式)。它们不是为了穷举或将本发明限制于所公开的精确形式,并且鉴于上述教导可以进行很多修改与变化。根据权利要求书与其等效物来理解本发明。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号