首页> 中国专利> 一种圆管内气液两相环状流截面相含率的测量及修正方法

一种圆管内气液两相环状流截面相含率的测量及修正方法

摘要

本发明公开了一种圆管内气液两相环状流截面相含率的测量及修正方法,包括以下步骤:1)通过摄影装置(1)结合光源(3)对圆管内气液两相环状流进行拍摄,得包含液膜和气芯的灰度图;2)对灰度图进行数字图像处理,得包含液膜和气芯的二值化图像;3)计算二值化图像中白色像素个数所占黑色与白色像素个数总和的百分比,得液膜相含率的成像值α

著录项

  • 公开/公告号CN108844959A

    专利类型发明专利

  • 公开/公告日2018-11-20

    原文格式PDF

  • 申请/专利权人 西安交通大学;

    申请/专利号CN201810327373.8

  • 发明设计人 白博峰;刘莉;

    申请日2018-04-12

  • 分类号

  • 代理机构西安通大专利代理有限责任公司;

  • 代理人徐文权

  • 地址 710049 陕西省西安市碑林区咸宁西路28号

  • 入库时间 2023-06-19 07:14:02

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-05-22

    授权

    授权

  • 2018-12-14

    实质审查的生效 IPC(主分类):G01N21/85 申请日:20180412

    实质审查的生效

  • 2018-11-20

    公开

    公开

说明书

技术领域

本发明属于气液两相环状流参数测量技术领域,具体涉及一种圆管内气液两相环状流截面相含率的测量及修正方法。

背景技术

气液两相环状流是一种重要的、并在工程领域应用广泛的两相流动,管内环状流主要由管壁液膜和中心雾状高速气芯组成。环状流中管壁液膜与气芯存在强烈的质量、动量和能量传递,气液相含率的准确测量不仅是获得气液分相速度、流量等参数的基础,同时对深入研究环状流的流动传热特性具有重要作用。根据测量原理不同,气液两相流相含率的测量方法主要包括快关阀法、电导法、光学法、射线法及过程层析成像法等。快关阀法通过测量体积相含率近似代替截面相含率,主要用于测量装置的标定,无法满足实时、在线测量的要求。电导法简单可靠、成本较低,但它只适用导电液体的测量,电导探针侵入流体对流场也会产生一定的干扰,导致测量偏差。光学法测量精度较高,但光学测量设备普遍价格昂贵,操作过程复杂,且对被测介质和应用环境的清洁度有严格要求。此外,快关阀法、电导法、光学法测量的数据多为单点、定常或定时均值,不能测量整个流动截面上的瞬时相含率分布。过程层析成像法具有非侵入式测量的优点,但是由于层析成像的反馈信号受相分布影响很大,且测量结果高度依赖图像重建算法的精度,在含气率较低的测量范围内才能保证测量效果。

发明内容

本发明的目的在于克服上述现有技术的不足,提供了一种圆管内气液两相环状流截面相含率的测量及修正方法,该方法能够实现气液两相环状流管壁液膜和气芯相含率的高精度检测。

为达到上述目的,本发明所述的圆管内气液两相环状流截面相含率的测量及修正方法包括以下步骤:

1)在圆管的测量段外布置矩形透明水箱,再在矩形透明水箱的背面布置光源,然后通过摄影装置拍摄圆管内气液两相环状流的图像,得包含圆管管道、液膜及气芯的灰度图;

2)对步骤1)得到的灰度图进行数字图像处理,得包含液膜及气芯的二值化图像;

3)计算步骤2)得到的二值化图像中白色像素个数所占黑色与白色像素个数总和的百分比,得液膜相含率的成像值αl,成像

4)建立预测圆管壁厚及液膜相含率成像值αl,成像与真实值定量关系的光学成像理论模型,得液膜相含率缩放因子K液膜

5)利用步骤4)得到的液膜相含率缩放因子K液膜对待测量液膜相含率的成像值αl,成像进行修正,得待测量液膜相含率的真实值αl,真实

6)通过1减去液膜相含率的真实值αl,真实得待测量气芯相含率的真实值αg,真实,完成圆管内气液两相环状流截面相含率的测量及修正。

步骤2)的具体操作过程为:

a)从灰度图上分割出包含液膜及气芯的有效区域;

b)利用对比度调整函数提高灰度图的对比度;

c)利用填充函数进行灰度图空洞区域填充,消除液膜中夹带的气泡;

d)将灰度图转化为二值图像;

e)通过填充函数及求反函数消除气芯中夹带的液滴,完成灰度图的数字图像处理。

步骤3)中液膜相含率的成像值αl,成像为:

其中,Pxl为二值化图像中白色像素的个数,Pxg为二值化图像中黑色像素的个数。

设圆管内径及外径分别为r及R,管壁的厚度为(R-r),光源发出的光线进入圆管后在圆管内管壁处的入射角为θ2,光线穿过圆管管壁在矩形透明水箱水侧的折射角为θ1,其中,折射光线经矩形透明水箱壁面射出后平行入射到摄影装置(1)中,圆管管壁厚度的成像值为(R–r-L),其中,变量L为射出圆管的光线与圆管外壁之间的垂直距离;

折射角θ1满足几何关系:

根据斯涅尔定律,入射角θ2与折射角θ1满足:

其中,n为水的折射率,n管壁为圆管的折射率;

由式(2)、式(3)及式(4)得:

由式(5)可知,当已知圆管的内径r及外径R、光线在水中及圆管管壁中的折射率n及n管壁,即可求得变量L的大小。

光源发出的光线AB从液膜与圆管内壁边界折射后以光线BC进入圆管管壁,光线BC随后在圆管外壁与矩形透明水箱水侧再次发生折射后平行射入摄影装置(1)中,其中,光线在液膜与圆管内管壁处的入射角及折射角分别为θ4及θ3,光线在圆管外管壁与矩形透明水箱水侧处的入射角及折射角分别为θ2及θ1,设y1为射出圆管的光线BC与圆管轴线之间的垂直距离,则折射角θ1满足的几何关系为:

圆管外壁处的入射角θ2与矩形透明水箱(2)的水侧折射角θ1满足:

光线BC的轨迹方程为:

y=y1-tan(θ12)(Rcosθ1-x)(8)

对圆OB的轨迹方程为:

x2+y2=r2(9)

由式(8)及式(9)得B点的坐标位置(xB,yB);

线段OB的斜率为:

光线在液膜处的入射角θ4与圆管内壁处的折射角θ3满足:

经过液膜的光线AB的方程为:

y=yB+xBtan[θ43-(θ12)](12)

光线OA的方程为:

y=r-h(13)

联立式(12)及式(13),得A点的坐标(xA,yA),则A点处气液相界面与圆心的距离rA为:

液膜的真实厚度h为:

h=r-rA(15)

则液相真实相含率αl,真实与相含率成像值αl,成像分别为:

存在几何关系:

Y1=r+L(18)

其中,变量L通过式(5)得到;

液膜相含率缩放因子K液膜为:

步骤5)中待测量液膜相含率的真实值αl,真实为:

步骤6)中待测量气芯相含率的真实值αl,真实为:

αg,真实=1-αl,真实(21)。

本发明具有以下有益效果:

本发明所述的圆管内气液两相环状流截面相含率的测量及修正方法在具体操作时,以摄影装置作为监测仪器,通过摄影装置结合光源对圆管内气液两相环状流进行拍摄,得包含液膜及气芯的灰度图;然后对灰度图进行数字图像处理得二值化图像,计算二值化图像中白色像素个数占黑像素个数和白像素个数总和的百分比,得液膜相含率的成像值;最后构建光学成像理论模型,并利用液膜相含率缩放因子对液膜相含率成像值进行修正,得液膜相含率的真实值,操作简单,易于实现,并且整个检测过程只需通过非侵入的方式对圆管内气液两相环状流进行拍摄即可,整个检测过程中对圆管内液体的流动无干扰,检测精度较高,并且安全可靠,检测成本低。

附图说明

图1为本发明中摄影装置1与光源3的位置关系图;

图2为圆管内部的结构示意图;

图3a为本发明中的包含液膜和气芯的灰度图像;

图3b为本发明中的增强对比度后的图像;

图3c为本发明中的填洞消去液膜中夹带气泡后的图像;

图3d为本发明中的二值化图像;

图3e为本发明中的填洞消去气芯中夹带液滴后的图像;

图4a为本发明中圆管管壁的成像光路图;

图4b为本发明中管壁液膜的成像光路图。

其中,1为摄影装置、2为矩形透明水箱、3为光源。

具体实施方式

下面结合附图对本发明做进一步详细描述:

参考图1至图4b,本发明所述的圆管内气液两相环状流截面相含率的测量及修正方法包括以下步骤:

1)在圆管的测量段外布置矩形透明水箱2,再在矩形透明水箱2的背面布置光源3,然后通过摄影装置1拍摄圆管内气液两相环状流的图像,得包含圆管管道、液膜及气芯的灰度图;

2)对步骤1)得到的灰度图进行数字图像处理,得包含液膜及气芯的二值化图像;

3)计算步骤2)得到的二值化图像中白色像素个数所占黑色与白色像素个数总和的百分比,得液膜相含率的成像值αl,成像

4)建立预测圆管壁厚及液膜相含率成像值αl,成像与真实值定量关系的光学成像理论模型,得液膜相含率缩放因子K液膜

5)利用步骤4)得到的液膜相含率缩放因子K液膜对待测量液膜相含率的成像值αl,成像进行修正,得待测量液膜相含率的真实值αl,真实

6)通过1减去液膜相含率的真实值αl,真实得待测量气芯相含率的真实值αg,真实,完成圆管内气液两相环状流截面相含率的测量及修正。

步骤2)的具体操作过程为:

a)从灰度图上分割出包含液膜及气芯的有效区域;

b)利用对比度调整函数提高灰度图的对比度;

c)利用填充函数进行灰度图空洞区域填充,消除液膜中夹带的气泡;

d)将灰度图转化为二值图像;

e)通过填充函数及求反函数消除气芯中夹带的液滴,完成灰度图的数字图像处理。

步骤3)中液膜相含率的成像值αl,成像为:

其中,Pxl为二值化图像中白色像素的个数,Pxg为二值化图像中黑色像素的个数。

步骤4)的具体操作为:

设圆管内径及外径分别为r及R,管壁的厚度为(R-r),光源3发出的光线进入圆管后在圆管内管壁处的入射角为θ2,光线穿过圆管管壁在矩形透明水箱2水侧的折射角为θ1,其中,折射光线经矩形透明水箱2壁面射出后平行入射到摄影装置1中,圆管管壁厚度的成像值为(R–r-L),其中,变量L为射出圆管的光线与圆管外壁之间的垂直距离;

折射角θ1满足的几何关系为:

根据斯涅尔定律,入射角θ2与折射角θ1满足:

其中,n为水的折射率,n管壁为圆管的折射率;

由式(2)、式(3)及式(4)得:

由式(5)可知,当已知圆管的内径r及外径R、光线在水中及圆管管壁中的折射率n及n管壁,即可求得变量L的大小。

光源3发出的光线AB从液膜与圆管内壁边界折射后以光线BC进入圆管管壁,光线BC随后在圆管外壁与矩形透明水箱2水侧再次发生折射后平行射入摄影装置1中,其中,光线在液膜与圆管内管壁处的入射角及折射角分别为θ4及θ3,光线在圆管外管壁与矩形透明水箱2水侧处的入射角及折射角分别为θ2及θ1,设y1为射出圆管的光线BC与圆管轴线之间的垂直距离,则折射角θ1满足的几何关系为:

圆管外壁处的入射角θ2与矩形透明水箱2水侧的折射角θ1满足:

光线BC的轨迹方程为:

y=y1-tan(θ12)(Rcosθ1-x)(8)

对圆OB的轨迹方程为:

x2+y2=r2(9)

由式(8)及式(9)得B点的坐标位置(xB,yB);

线段OB的斜率为:

光线在液膜处的入射角θ4与圆管内壁处的折射角θ3满足:

经过液膜的光线AB的方程为:

y=yB+xBtan[θ43-(θ12)](12)

光线OA的方程为:

y=r-h(13)

联立式(12)及式(13),得A点的坐标(xA,yA),则A点处气液相界面与圆心的距离rA为:

液膜的真实厚度h为:

h=r-rA(15)

则液相真实相含率αl,真实与相含率成像值αl,成像分别为:

存在几何关系:

Y1=r+L(18)

其中,变量L通过式(5)得到;

液膜相含率缩放因子K液膜为:

步骤5)中待测量液膜相含率的真实值αl,真实为:

步骤5)中待测量气芯相含率的真实值αl,真实为:

αg,真实=1-αl,真实(21)。

本发明在具体实施时只需采用摄影装置1对圆管内气液两相环状流进行拍摄,通过数字图像处理获得液膜相含率成像值,并利用光学成像理论模型对液膜相含率成像值进行修正,即可实现对环状流中气液相含率的非侵入、高精度测量,对工业实践中的环状流检测具有重要的指导意义。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号