首页> 中国专利> 聚降冰片烯骨架糖聚合物的制备方法及其在岩藻聚糖硫酸酯模拟物合成中的应用

聚降冰片烯骨架糖聚合物的制备方法及其在岩藻聚糖硫酸酯模拟物合成中的应用

摘要

本发明属于高分子材料合成与制备技术领域,具体涉及一种聚降冰片烯骨架糖聚合物的制备方法及其在岩藻聚糖硫酸酯模拟物合成中的应用。首先将带有叠氮功能基团的无保护糖与炔基化的降冰片烯酸酐发生“click”反应得到糖单体,再将该单体在缓冲溶液/有机相/相转移催化剂组成的乳液体系下,采用Grubbs type催化剂在微波辅助加热下催化烯烃复分解开环聚合反应,经乙烯基乙醚终止反应,凝胶柱分离、透析得到聚合物。本发明制备均聚物和嵌段型聚合物,所得的聚合物分子量大,分子量分布范围窄,与天然多糖类化合物结构类似。本发明方法可以合成不同硫酸化位点的岩藻糖聚合物,来模拟海洋来源岩藻聚糖硫酸酯的结构与功能。

著录项

  • 公开/公告号CN108530570A

    专利类型发明专利

  • 公开/公告日2018-09-14

    原文格式PDF

  • 申请/专利权人 中国海洋大学;

    申请/专利号CN201810126793.X

  • 发明设计人 蔡超;于广利;凡飞;李国云;

    申请日2018-02-08

  • 分类号

  • 代理机构沈阳优普达知识产权代理事务所(特殊普通合伙);

  • 代理人张志伟

  • 地址 266100 山东省青岛市崂山区松岭路238号

  • 入库时间 2023-06-19 06:29:52

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-03-27

    授权

    授权

  • 2018-10-16

    实质审查的生效 IPC(主分类):C08F132/08 申请日:20180208

    实质审查的生效

  • 2018-09-14

    公开

    公开

说明书

技术领域

本发明属于高分子材料合成与制备技术领域,具体涉及一种聚降冰片烯骨架糖聚合物的制备方法及其在岩藻聚糖硫酸酯模拟物合成中的应用。

背景技术

糖类化合物是自然界中分布最广、数量最多的一类物质,多以大分子的形式存在于生物体内,是继核酸和蛋白质之后的第三类重要的生物活性大分子。糖聚合物是一类糖类化合物共价连接到聚合物骨架上的高分子化合物,其分子量与天然含糖大分子物质的分子量相近,在结构基础上含糖大分子物质的基本活性单元构成糖聚合物的单体结构,具有“多价效应”,能提高基本活性单元与蛋白质的亲和力,达到与天然含糖大分子物质相近的活性水平,可以用于模拟天然多糖的结构与功能。由于亲水性糖基的引入,这类糖聚合物有高官能度、低毒性、生物相容性、药物活性、以及可能的生物降解性。基于这些特点,糖聚合物已经成为糖科学领域的研究热点。

岩藻聚糖硫酸酯(Fucoidan)主要来源于褐藻与海洋软体动物,其结构为岩藻糖以α(1→3)连接或者α(1→3)与α(1→4)交替连接,糖链上有部分羟基发生硫酸酯化,分子量因种属不同差异很大。Fucoidan具有免疫调节、抗肿瘤、抗炎和抗凝抗血栓、抗病毒等生物活性,在大量摄入时也没有发现任何毒性,其生物活性与基本骨架、硫酸根含量及位置、分子量等因素密切相关。Fucoidan主要经提取得到,结构上具有微观不均一性,为详细研究其构效关系带来困难。同时,Fucoidan结构片段的全合成步骤繁琐、耗时较长、产率较低、糖苷键构型和硫酸基位置不易控制,并且合成的结构片段较小,活性较低。因此,糖聚合物由于合成方便、产率高、结构均一,可以作为Fucoidan的结构类似物,研究其结构与生物活性的关系。

目前公开的糖聚合物的合成方法主要为自由基聚合。中国专利申请(公告号:CN103539885 B)公开具有生物识别特性的温敏性聚乙烯基糖聚合物的制备方法,中国专利申请(公告号:CN 105017477 B)公开对胞内pH大小具有指示功能的荧光标记的pH探针糖聚合物的制备方法,中国专利申请(公布号:CN 105585663 A)公开“一锅法”结合活性自由基聚合和活性酯交换制备糖聚合物的方法,中国专利申请(公布号:CN 106046252 A)公开具有表面吸附性能的含有多巴胺的糖聚合物的“一锅法”制备方法。中国专利申请(公告号:CN100547007C)公开开环聚合制备含引发活性种的聚己内酯,以此为原子转移自由基聚合方法合成聚己内酯-嵌段-糖聚合物生物材料。中国专利申请(公布号:CN 106336501 A)公开了开环聚合制备的大分链转移剂引发的含活性酯的聚乙烯基聚合物,利用活性酯交换制备的糖聚合物。这两个公开专利均结合开环聚合与自由基聚合。这些糖聚合物的制备过程繁琐,反应效率较低。降冰片烯类聚合物目前研究较多,中国专利申请(公告号:CN 1787983B,CN 101641389 B,CN 102585069 B,CN 104693423 B,CN 104540798 B,CN 101952263 A)公开降冰片烯基聚合物的制备方法。因此,含糖的降冰片烯基聚合物及其制备方法仍未见报道,并且在Fucoidan模拟物合成中的应用还未见相关报道。降冰片烯基聚合物具有分子量分布范围窄、反应效率高、底物适用性广等优点,在糖聚合物合成中具有很好的应用潜力。

发明内容

针对目前糖聚合物合成中的技术局限,本发明所要解决的技术问题是提供一种简便的高效合成降冰片烯基糖聚合物的方法,并应用该方法合成硫酸化岩藻糖聚合物来模拟岩藻聚糖硫酸酯的结构与功能,为硫酸化多糖的模拟物合成提供方法。本发明以含无保护基糖的水溶性外型降冰片烯基化合物为单体,以市售的Grubbs type催化剂催化反应,在微波加热的反应条件下发生烯烃复分解开环聚合反应,快速高效制备糖聚合物,所得糖聚合物分子量大、分子量分布范围窄,所建立的方法适用于不同硫酸化位点岩藻糖单体等硫酸化糖单体的聚合反应,可以用于硫酸化多糖模拟物的制备。

为达到上述技术目的,实现上述技术效果,本发明具体提供如下技术方案:

1、聚降冰片烯骨架的糖聚合物具有如下结构:

其中,n的取值范围为1-7,m的取值范围为15-300,X为含糖部分(对于均聚物为同一种糖,对于嵌段型聚合物为不同的糖)。

2、该类均聚物的制备方法包括如下具体步骤:

步骤1)带有叠氮功能团的糖与炔丙胺化将冰片烯酸酐在五水硫酸铜、抗坏血酸钠条件下发生铜催化的叠氮-炔基环加成反应,合成没有保护基的糖单体。

步骤2)对在步骤1)中得到的糖单体,室温下在bis-Tris buffer/二氯乙烷/DTAB反应体系中形成稳定的乳液状态,加入催化剂Hoveyda-Grubbs 2nd微波加热到75℃反应,加入终止剂乙烯基乙醚,凝胶柱纯化、透析得到均聚物。

3、利用步骤1)可以用不同的糖单体,进一步制备该类嵌段型聚合物,制备方法如下:

采用步骤2)的方法,将一种单体烯烃复分解开环聚合得到聚合物,反应液中加入另一种单体继续反应,最后加入终止剂乙烯基乙醚,凝胶柱纯化、透析得到嵌段型聚合物。

4、利用建立的烯烃复分解开环聚合反应方法,进一步制备岩藻聚糖模拟物的方法如下:

以选择性硫酸化的无保护基岩藻糖单体为反应原料,采用步骤2)的方法,进行烯烃复分解开环聚合反应,反应液中加入终止剂乙烯基乙醚,凝胶柱纯化、透析得到硫酸化位点明确的岩藻聚糖模拟物。

本发明的优点及有益效果在于:

(1)本发明采用铜催化的叠氮-炔基环加成反应,将含糖部分与降冰片烯部分偶联,反应效率高,单体制备方法简单高效。

(2)本发明用于烯烃复分解开环聚合反应的糖单体没有保护基,得到的聚合物无需脱保护步骤,通过一步聚合反应即可得到最终聚合物,制备方法简便。

(3)本发明中烯烃复分解开环聚合反应在微波辅助的条件下进行,反应时间短(少于5min),单体完全转化为聚合物,提高聚合反应的效率。

(4)本发明建立的烯烃复分解开环聚合反应,适用于水溶性糖单体尤其是硫酸化糖单体的聚合反应,为合成硫酸化位点明确的硫酸化多糖模拟物提供新方法。

(5)本发明采用烯烃复分解开环聚合反应来制备糖聚合物,反应的底物适用性广,得到的聚合物分子量较大,分子量分布范围窄,是一种简便、高效的聚合方法,易于推广。

结合附图阅读本发明的具体实施方式后,本发明的其它优点和特点将变得更加清晰。

附图说明

图1为本发明中葡萄糖单体的合成路线图。

图2为本发明中甘露糖单体的合成路线图。

图3为本发明中聚合物p-Glu和p-Glu-b-Man的核磁氢谱图。图中,横坐标f1代表化学位移(ppm)。

图4为本发明中聚合物p-Glu的分子量图。图中,横坐标Retnetion Time代表时间(min),纵坐标Relative Scale代表相对比例。

图5为本发明中聚合物p-Glu-b-Man的分子量图。图中,横坐标Retnetion Time代表时间(min),纵坐标Relative Scale代表相对比例。

图6为本发明中岩藻糖2位硫酸化单体的合成路线图。

图7为本发明中2位硫酸化岩藻糖聚合物p-Fuc2S的核磁氢谱图。图中,横坐标f1代表化学位移(ppm)。

图8为本发明中2位硫酸化岩藻糖聚合物p-Fuc2S的分子量图。图中,横坐标Retnetion Time代表时间(min),纵坐标Relative Scale代表相对比例。

图9为本发明中以葡萄糖、甘露糖、岩藻糖为代表的均聚和嵌段型聚合物的结构特征,特别是不同硫酸化位点的岩藻聚糖硫酸酯模拟物(Fucoidan-mimetics)的代表结构图。

具体实施方式

在具体实施过程中,本发明首先是带有叠氮功能团的无保护糖与炔基化的降冰片烯酸酐发生“click”反应得到糖单体,再将糖单体在缓冲溶液/有机相/相转移催化剂组成的乳液体系下,采用Grubbs type催化剂在微波加热的条件下催化烯烃复分解开环聚合反应,经乙烯基乙醚终止反应,凝胶柱分离、透析得到聚合物。该方法操作简便、反应效率高、反应底物适用范围广,可以制备均聚物和嵌段型聚合物,所得的聚合物分子量大,分子量分布范围窄,与天然含糖大分子物质的结构类似。采用本发明的聚降冰片烯骨架的糖聚合物制备方法,可以合成不同硫酸化位点的岩藻糖聚合物,来模拟海洋来源岩藻聚糖硫酸酯的结构与功能。本发明的聚降冰片烯骨架的糖聚合物可以作为天然含糖大分子物质的模拟物,在研究糖链结构与活性关系、药物开发、药物释放等方面具有潜在的应用。

如图9所示,可以看出葡萄糖(Glu)、甘露糖(Man)、岩藻糖(Fuc)等代表性糖类化合物经“click”反应形成五元氮杂环,连接在降冰片烯的聚合骨架上。经优化反应条件和反应过程制备嵌段型的糖聚合物,此时仍为降冰片烯的聚合骨架结构,但是取代的X基团为结构不同的糖类化合物。经位置选择性硫酸化制备不同硫酸化形式的岩藻糖单体,在乳液体系下经聚合反应制备岩藻聚糖硫酸酯的模拟物(Fucoidan-mimetics)。

下面,结合附图和实施例对本发明的技术方案进一步的详细说明。

实施例1:葡萄糖单体的制备

如图1所示,称取叠氮乙醇化的葡萄糖110.0mg(0.44mmol)于圆底烧瓶中,加入4mlTHF/H2O(1:1)溶解,加入炔丙胺化的外型降冰片烯酸酐138.8mg(0.66mmol),加入五水硫酸铜868.3μl(0.088mmol,25mg/ml)、抗环血酸钠929.9μl(0.528mmol,100mg/ml),室温反应12h,反应液蒸干,柱层析得到纯品葡萄糖单体。

实施例2:甘露糖单体的制备

如图2所示,称取叠氮乙醇化的甘露糖110.0mg(0.44mmol)于圆底烧瓶中,加入4mlTHF/H2O(1:1)溶解,加入炔丙胺化的外型降冰片烯酸酐38.8mg(0.66mmol),加入五水硫酸铜868.3μl(0.088mmol,25mg/ml)、抗环血酸钠929.9μl(0.528mmol,100mg/ml),室温反应12h,反应液蒸干,柱层析得到纯品甘露糖单体。

实施例3:聚降冰片烯基葡萄糖均聚物(p-Glu)的制备

取实施例1中的纯品葡萄糖单体10mg于微波反应管中,加入11mg相转移催化剂DTAB,加入600μl bis-Tris buffer和二氯乙烷,加入174μl催化剂Hoveyda-Grubbs 2nd,室温搅拌使形成稳定的乳液状态,置于微波反应器中反应5min,加入过量乙烯基乙醚终止反应,反应液直接用LH-20分离纯化,所用洗脱剂为双蒸水,收集样品,双蒸水透析3d,冻干得到聚降冰片烯基葡萄糖均聚物p-Glu,其核磁氢谱如图3所示,其分子量分析图谱如图4所示。由图3可以看出,葡萄糖异头氢的化学位移出现在4.25ppm左右,证明聚合物中葡萄糖的存在。由图4可以看出,激光和式差信号的峰很好的重叠,证明样品纯度较高且分子量分布较集中,同时经激光检测器获得其分子量为96.1kDa。

所述bis-Tris buffer的浓度为0.1M,pH为5.9;所述催化剂Hoveyda-Grubbs 2nd用二氯乙烷配成4mg/ml的储备液;所述反应体系bis-Tris>

实施例4:聚降冰片烯基葡萄糖-甘露糖嵌段型聚合物(p-Glu-b-Man)的制备

取实施例1中的纯品葡萄糖单体10mg于微波反应管中,加入11mg相转移催化剂DTAB,加入600μl bis-Tris buffer和二氯乙烷,加入348μl催化剂Hoveyda-Grubbs 2nd,室温搅拌使形成稳定的乳液状态,置于微波反应器中反应5min,加入实施例2中的纯品甘露糖单体10mg,再次置于微波反应器中反应5min,加入过量乙烯基乙醚终止反应,反应液直接用LH-20分离纯化,所用洗脱剂为双蒸水,收集样品,双蒸水透析3d,冻干得到聚降冰片烯基葡萄糖-甘露糖嵌段型聚合物p-Glu-b-Man,其核磁氢谱如图3所示,其分子量分析图谱如图5所示。由图3可以看出,葡萄糖和甘露糖的异头氢分别出现在4.25ppm和4.7ppm左右,证明嵌段型聚合物的形成。由图5可以看出,激光和式差信号的峰很好的重叠,证明样品纯度较高且分子量分布较集中,同时经激光检测器获得其分子量为106.4kDa。

所述bis-Tris buffer的浓度为0.1M,pH为5.9;所述催化剂Hoveyda-Grubbs 2nd用二氯乙烷配成4mg/ml的储备液;所述反应体系bis-Tris>

实施例5:岩藻糖2位硫酸化糖单体的制备

如图6所示,取端基叠氮化岩藻糖Ⅰ166.9mg(0.44mmol)于圆底烧瓶中,加入4mlTHF/H2O(1:1)溶解,加入炔丙胺化的外型降冰片烯酸酐138.8mg(0.66mmol),加入五水硫酸铜868.3μl(0.088mmol,25mg/ml)、抗环血酸钠929.9μl(0.528mmol,100mg/ml),室温反应12h,反应液蒸干,柱层析得到端基连有降冰片烯基的岩藻糖Ⅱ。取化合物Ⅱ52.3mg(0.09mmol)于圆底烧瓶中,加入600μL溶解,加入SO3·Py>+型),调节反应液pH为中性,过滤,反应液蒸干,经SephadexLH-20纯化得到纯品岩藻糖2位硫酸化糖单体Ⅲ。

实施例6:2位硫酸化岩藻糖聚合物p-Fuc2S的制备

取实施例5中的纯品岩藻糖2位硫酸化糖单体Ⅲ12mg于微波反应管中,加入11mg相转移催化剂DTAB,加入600μl bis-Tris buffer和二氯乙烷,加入174μl催化剂Hoveyda-Grubbs 2nd,室温搅拌使形成稳定的乳液状态,置于微波反应器中反应5min,加入过量乙烯基乙醚终止反应,反应液直接用LH-20分离纯化,所用洗脱剂为双蒸水,收集样品,双蒸水透析3d,冻干得到2位硫酸化岩藻糖聚合物p-Fuc2S,其核磁氢谱如图7所示,其分子量分析图谱如图8所示。由图7可以看出,岩藻糖的甲基峰出现在1.15ppm左右,2位硫酸化修饰的岩藻糖其异头氢出现在5.0ppm,证明聚合物中硫酸化岩藻糖的存在。由图8可以看出,激光和式差信号的峰很好的重叠,证明样品纯度较高且分子量分布较集中,同时经激光检测器获得其分子量为81.9kDa。

所述bis-Tris buffer的浓度为0.1M,pH为5.9;所述催化剂Hoveyda-Grubbs 2nd用二氯乙烷配成4mg/ml的储备液;所述反应体系bis-Tris>

将实施例3、实施例4和实施例6得到的聚合物进行表征,其结果如表1所示:

表1聚合物p-Glu、p-Glu-b-Man和p-Fuc2S的表征数据

a:数均分子量;

b:重均分子量;

c:分散系数。

综上所述,本发明成功地制备均聚物p-Glu和嵌段型p-Glu-b-Man,本发明以无保护基水溶性降冰片烯基糖单体为原料,在乳液体系中经微波辅助的加热方式可以简便、高效地合成均聚的和嵌段型的糖聚合物,丰富糖聚合物的合成方法,本发明还可以应用于岩藻聚糖硫酸酯(Fucoidan)模拟物(如p-Fuc2S)的合成,同时也适用于半乳糖、阿拉伯糖、乳糖的等糖聚合物的制备,对于研究天然含糖的生物大分子的结构与活性关系以及药物开发等方面有十分重要的意义。

以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号