首页> 中国专利> 使用颜色空间信息来导出像素级衰减因子的环境光抑制

使用颜色空间信息来导出像素级衰减因子的环境光抑制

摘要

一种成像系统中进行环境光抑制的方法(400),包括:用设置在多叶准直器(MLC)的壳体内的照明系统的第一光照亮MLC的叶片;通过MLC的孔接收在MLC的壳体内的环境光;使用具有位于MLC的壳体内的光学元件的成像系统捕获用第一光和环境光照亮的MLC的叶片的第一图像;通过处理设备抑制第一图像中的环境光以生成MLC的叶片的第二图像;以及检测在第二图像中的MLC的叶片的特性。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-05-29

    授权

    授权

  • 2018-07-06

    实质审查的生效 IPC(主分类):A61N5/10 申请日:20160321

    实质审查的生效

  • 2018-06-08

    公开

    公开

说明书

相关申请

本申请要求于2015年6月12日提交的美国临时专利申请号62/175,149的优先权,其通过引用的方式整体并入本文。

技术领域

本公开的实施例涉及用于在放射治疗系统中使用的多叶准直器(MLC,multi-leafcollimator)的一种基于光学相机的跟踪系统,且具体地涉及基于跟踪系统来抑制进入在相机上的MLC壳体中的环境光(ambient light)的影响。

背景技术

准直器经常用于放射治疗中以形成被称为治疗束的一束高能粒子。一些放射治疗系统使用称为多叶准直器(MLC)的可变孔径的准直器。多叶准直仪是由能够独立地移进和移出治疗束的路径的各个叶片的集合组成的。对于适形放射治疗而言,MLC使得能够对治疗束进行适形整形。相应地,基于图像的反馈能够用于确保各个叶片的准确放置。

附图说明

在附图中,通过实例而非限制的方式示出了本公开。

图1A示出了根据本公开的实施例的具有带可改变的可变孔径准直器的基于机器人的LINAC的放射治疗系统的组件的一个实施例。

图1B示出了根据本公开的实施例的利用相同反馈系统来验证叶片位置的MLC壳体。

图1C示出了根据本公开的实施例的具有带可改变的可变孔径准直器的基于机器人的LINAC的放射治疗系统的组件的另一个实施例。

图2A至B示出了根据本公开的实施例的源于MLC壳体的内部的视图,其中环境光通过MLC的孔进入。

图3示出了根据本公开的实施例的MLC孔的反馈相机图像。

图4示出了根据本公开的实施例的用于抑制在成像系统中的环境光的方法的流程图。

图5示出了根据本公开的实施例的被创建用于在图3中所示的反馈相机图像的最终图像。

图6示出了根据本公开的实施例的可以用于执行放射治疗的系统的一个实施例。

图7示出了根据本公开的实施例的图像引导的放射治疗系统。

图8示出了根据本公开的实施例的基于台架的图像引导的放射治疗系统。

图9示出了根据本公开的实施例的基于台架的调强放疗(IMRT)系统。

具体实施方式

本文描述的是一种用于抑制环境光对基于相机的跟踪系统的影响的方法。在一个实施例中,为了使得能够对在放射治疗系统的线性加速器中的MLC叶片位置进行视觉跟踪和验证,实施了具有位于准直器壳体内部的相机的基于相机的叶片位置反馈系统。基于相机的叶片跟踪系统是通过检测在叶片表面的图像上可见的叶片特性(例如,凹口、边缘、突出物等)而进行操作的。由于相机位于具有最少照明的准直器壳体的内部,因此使用位于壳体内部的LED照明系统来用光照亮叶片的表面。外部的光可以进入准直器壳体并在孔的内部的叶片的侧面上反射。这在孔中创建了不良的照明,包括在接近形成该孔的叶片的前缘处。这种照明能够使得对叶片位置的视觉跟踪和验证变得困难。

本公开的实施例描述了环境光抑制技术,其可以包括白平衡运算、确定颜色饱和度、生成环境光衰减图并将环境光衰减图应用于原始图像。各种实施例允许通过减少在整个孔中的不良照明,且特别地在接近形成该孔的叶片的前缘处来实现对叶片的位置的精确的视觉验证。此外,这些实施例可以被应用于受环境光影响的其它类型的成像系统。在一个实施例中,基于相机的反馈系统可以是主反馈系统。在另一个实施例中,基于相机的反馈系统可以是二次反馈系统。

应注意的是,虽然某些实施例在本文中可以相关于白光进行描述,但本文所描述的方法还可以与任何特征化的光源(已知主颜色波长)一起使用。可以基于操作环境选择颜色以使得在内部系统和环境光之间的颜色分离最大化。颜色选择可以在治疗设施处在LINAC 101安装时或在制造时完成。例如,如果照明系统还被安装在治疗室中,则可以选择所需的内部颜色以用于安装。替代地,在LINAC 101安装时,传感器可以保持在MLC的孔(例如,由孔202示出),其中关闭了MLC照明系统107以测量在MLC内的环境光的颜色。在这个实施例中,任何被认为与测量的颜色太接近的颜色(例如,使用度量,诸如国际照明委员会(CIE)所使用的Delta-E度量来计算最不同的颜色,或在RGB/色度空间中的L2距离)将被视为是环境的。这可以消除对根据一个实施例可以执行的下面所讨论的白平衡运算(例如,图4的运算420)的需要。在一个特定实施例中,为了使系统性能最大化,可以分析其中使用MLC壳体的放射治疗室的环境照明条件以确定可以按各种方式执行的最不相似的MLC照明颜色(波长)。在一个实施例中,例如,如果环境光在RGB空间中是蓝色的([0,0,1]),最佳内部光可以是黄色的([1,1,0]),其是红色和绿色的组合,这沿三个独立的色轴导致了最大的分离。用于量化该分离的另一种方式是在色调、饱和度和值(HSV)的空间中,其中第一通道为色调/铬黄。图1A和1C示出了具有带可改变的准直器100的基于机器人的线性加速器(LINAC)101的放射治疗系统的组件的实施例的不同视图。在一个实施例中,放射治疗系统102包括放射治疗机器人,其具有被安装在机器人臂103上的LINAC 101。准直器壳体100可以包含可以被可拆卸地安装到LINAC 101的具有不同孔径的各种类型的准直器(例如,虹膜准直器、MLC等)中的任何一种。不同的准直器可以驻留在准直器台104中,其中放射治疗机器人可以基于准直器的类型进行移动以拾取和放下准直器。特定的孔径与放射治疗计划的细节相匹配。在下述的实施例中,准直器壳体100表示包括MLC的准直器壳体。在替代的实施例中,本文所述的方法可以与其它类型的可变孔径准直器和其它类型的放射治疗系统(例如,基于台架的LINAC治疗系统)一起使用。

图1B示出了从MLC壳体100的图1A截取的横截面侧视图1B-1B’。MLC壳体100包括用于照亮MLC壳体100的内部的内部(例如,LED)照明系统107,其包括LED灯108和漫射器110。相机反馈系统利用相机105来捕获MLC列(例如,106)的各个叶片位置的实况图像。应注意的是,相机105可以包括光学元件并包括与相机105相关联的其它电子器件的图像传感器,其位于更远离束的路径处,以使得不受辐射束的影响。相机105及其相关联的电子器件和照明系统107可以是被连接至数字处理系统670的相机反馈系统的一部分。相关于涉及图4描述的运算的实施方案而涉及图6进一步地描述数字处理系统670。

在LINAC 101操作期间,环境光109通过在MLC壳体100中的两列叶片之间的孔进入MLC壳体100(由向量119表示)中。应注意的是,由于图1B是MLC壳体100的横截面侧视图,所以在图中仅示出了多列叶片中的一列。孔为两列叶片之间的开口,其允许由LINAC 101生成的辐射束通过,如在图2A至B中所示的。当环境光109通过由MLC列106和相对的列111形成的孔时,其在孔的内部的叶片的侧面上反射。

图2A示出了如被图1的相机105捕获的源于MLC壳体100内部的视图。当环境光109进入MLC外壳100时,其在由虚线椭圆202指示的一般区域中的孔的内部的MLC列106的叶片的侧面上反射。应注意的是,孔可以是由MLC列106和111的叶片的中央前缘形成的区域。图2B示出了由环境光109导致的接近MLC列106和111的叶片的中央前缘处的不良照明204。不良照明204(其形状更好地说明了通常由参考数字202标识的孔)能够影响相机反馈系统的通过在孔中创建可能被错误地识别为可跟踪的叶片特性(其在一个实施例中可以是叶片中的凹口,但也能够是其它类型的特性,诸如叶片的边缘)的视觉图案并通过改变接近实际可跟踪的叶片特性的图像的外观来确定和验证MLC列106和111的各个叶片的位置的能力。

图3示出了源于光学成像系统的角度的MLC壳体100的内表面的图像300。环境光通过孔202(其参考数字箭头指向由MLC列106的叶片的前缘形成的中央区域)进入,其照亮了位于图1的MLC壳体100内部的金属表面。在此处,环境光被示为更多地照亮了孔202的下部区域302。

图4示出了用于抑制在成像系统中的环境光的影响的方法400的流程图。方法400是关于抑制进入MLC壳体且影响用于跟踪MLC叶片位置的基于光学相机的成像系统的环境光来进行描述的。然而,应理解的是,方法400还可以用于抑制受环境光影响的其它成像系统中的环境光,且特别地在环境光被拘束在一个区域中且并不打算照亮该区域或需要迫使受影响的区域变暗。方法400可以由处理逻辑执行,该处理逻辑包括硬件(例如,电路、专用逻辑、可编程逻辑、微代码等)、软件(例如,在处理设备上运行的以执行硬件模拟的指令)或其组合。

在方框410中,处理逻辑使用反馈系统相机105来捕获MLC列表面和孔的图像。在方框420中,在一个实施例中,如果当从仅存在内部光的相机查看时,相机和内部照明系统尚未导致在准直器壳体内的机械表面(例如,MLC列的叶片)显示灰度(近似无色),则可以执行可选的白平衡运算。当相机105的镜头褪色并变得更不透明且相机105的图像传感器的性能由于其中相机进行操作的放射环境而改变时,能够发生颜色的变化。可以执行白平衡运算以补偿相机系统中的这种放射引起的变化。

在一个实施例中,可以执行白平衡运算,例如,如果在MLC壳体100的内部照明系统不是近似灰色或通过一些运算被映射至灰色的情况下。为了执行白平衡,选择感兴趣区域(ROI),其中ROI是仅由内部照明系统照亮的MLC列106、111的机械表面。例如,可以将ROI指定为具有闭合孔的MLC列106的叶片的可见表面区域(例如,当叶片处于防止环境光进入壳体的位置时)。在选择ROI之后,对位于ROI内的所有像素计算平均RGB像素值v,这得到平均红色像素值、平均绿色像素值和平均蓝色像素值。例如,在两个像素的ROI中,像素A具有为[96;256;256]的RGB值,且像素B具有为[32;0;128]的RGB值。所得到的平均RGB像素值为[64;128;192]。应注意的是,本文提供的像素值仅仅是旨在帮助解释本文所述的方法的实例。尽管本文讨论了使用RGB空间的实施例,但在其它实施例中,也可以使用其它方式来实现使得用于可能不涉及RGB颜色空间的ROI的平均颜色饱和度最小化的效果。

使用平均RGB像素值,计算标量强度因子s。在一个实施例中,标量强度因子包括平均RGB像素值的三个值的平均值。使用前面平均RGB像素值为[64;128;192]的实例,标量强度因子将是这三个值的平均值,这导致了为128的标量强度因子。平均RGB像素值v和标量强度因子s的值可以用于计算白平衡参数向量g。白平衡参数向量被计算为平均RGB像素值乘以标量强度因子的倒数,如在下列等式中所示的。

g=s/v (1)

例如,使用上面计算的值,其中s=128和v=[64;128;192],所得到的计算生成g=128/[64;128;192]或[2.0;1.0;0.667]的白平衡参数向量。白平衡参数向量可以通过像素级乘法应用以校正在后续图像中的像素(就这点而言,白平衡运算420可以仅包括应用所计算的白平衡,考虑到系统硬件中的变化,可以较少地计算白平衡)。应注意的是,虽然有单一校正g,但其却被应用于后续图像中的所有像素。例如,给定RGB值为[64;128;192]的像素,校正的像素RGB值将是[64*2.0;128*1.0;192*0.667]=[128;128;128]。结果是校正的像素具有在三个颜色通道上的为零的饱和度(即,用于红色、绿色和蓝色的相同值)以及相同的平均强度。这给出几乎为灰度(即,具有小的计算的颜色饱和度值)的在MLC壳体100内部的叶片和其它金属表面的外观。在一些实施例中,不同的算法可以用于白平衡运算。实例可以是但不限于通过其L2-范数、感知强度或除了平均RGB值以外的度量来对像素强度进行归一化。在一个替代实施例中,可以在不同的颜色空间中计算度量,例如,如果相机105具有除了RGB以外的本地颜色空间的话。在另一个实施例中,当基于没有环境光的ROI获得设置时,可以使用基于相机硬件的白平衡运算。

在方法400的方框430中,处理逻辑确定用于在方框410捕获的图像的饱和度图。在一个实施例中,饱和度图是在图像中的每个像素的颜色饱和度的表示。在另一个实施例中,可以省略白平衡步骤,且饱和度图可以是在每个像素的颜色与参考颜色之间的在颜色空间中的距离的表示(即,关于在没有环境光的情况下由相机捕获的通过内部照明系统照亮的MLC叶片表面的外观的进行良好特征化的颜色)。

在方法400的方框440中,将一系列的形态学和非线性变换应用于饱和度图(或在颜色空间中至参考颜色的距离的图)S,以生成衰减图A,以抑制环境光。在一个实施例中,使用如下所示的等式2用像素亮度来调制饱和度,其中V为强度(亮度)图。

S=S*(1+V) (2)

使用等式2的结果,使用如下所示的等式3来创建急弯非线性衰减曲线。所需的急弯非线性衰减曲线可以最初具有高斜率值,其斜率值在达到指定的饱和度值时迅速下降。其结果是由于环境光而使具有高饱和度值的像素大大衰减,而不会使表示叶片位置的像素衰减的衰减曲线。

A=1/(a*S3+b*S2+c*S+d)(3)

在440中所述方法的替代方案为按1/(1+S)计算衰减图。替代地,使用饱和度图“直接”作为三次函数的输入,可以跳过440的第一个步骤(S=S*(1+V))。

三次系数(a,b,c,d)可以根据经验进行确定或针对某种类型的环境光进行计算(例如,通过将曲线拟合至所需的响应,其中x轴是饱和度,且y轴为所需衰减的倒数)以获得所需的衰减曲线或针对某种类型的环境光的响应。以这种方式,能够将衰减的灵敏度调谐到具有饱和度值的某种分布的环境光。在另一个实施例中,可以使用任何类型的合适的传递函数,诸如指数或高阶多项式或超越函数的组合。执行形态学运算(即,衰减图A的灰度开运算或腐蚀)以减少校正图像中的噪声和高频伪像。如果源图像具有大量噪声或当颜色通道的噪声是独立的时,使用形态学运算可能是有帮助的。随后,将环境光衰减图经像素级乘法(V=V*A)应用于原始图像。在方框450中,提供了抑制了环境光的最终图像。

应注意的是,上述运算仅仅是抑制环境光的影响的一种方法,且在替代实施例中,图4的运算中的某些可以是可选的或采取更简单的形式,例如,通过使用线性变换代替在方框440中的非线性变换。

图5示出了在方框450中为图3中所示的图像300创建的最终图像500,其中相对于表示较低衰减值的较亮区域,较暗区域表示较高衰减值。通过像素级乘法(V=V*A)将在图4的方框440处确定的环境光衰减图应用于整个原始图像300。环境光衰减图使得由环境光导致的具有高饱和度值的像素大大衰减,同时高度衰减由环境光引起的具有高饱和度值的像素,同时最少地衰减表示叶片位置的像素(其经方框420或通过其它技术进行适当地白平衡)。所得到的图像500显示了通过孔202,例如,如与图3的下部区域302相比在下部区域502中更突出地看到的,进入MLC壳体100的环境光的抑制(以及几何校正)。在抑制了环境光的情况下,基于相机的反馈系统能够更可靠地验证和跟踪MLC列106的各个叶片的位置。

图6示出了可以用于执行放射治疗的系统的一个实施例。这些系统可以用于执行,例如,上述的方法。如下所述及图6中所示,系统600可以包括诊断成像系统605、治疗计划系统610、治疗输送系统615和运动检测系统(未示出)。在一个实施例中,诊断成像系统605和运动检测系统被组合成单个单元。

诊断成像系统605可以是能够生成可以用于后续医疗诊断、治疗计划、治疗模拟和/或治疗输送的患者的医疗诊断图像的任何系统。例如,诊断成像系统605可以是计算机断层摄影(CT)系统、磁共振成像(MRI)系统、正电子发射断层摄影(PET)系统等。为了便于讨论,诊断成像系统605可以在下面不时地关于x射线成像模态进行讨论。在其它实施例中,也可以使用其它成像模态,诸如上面讨论的那些。

在一个实施例中,诊断成像系统605包括用于生成成像束(例如,x射线)的成像源620以及用于检测和接收由成像源620生成的束或由源于成像源的束刺激的次级束或发射(例如,在MRI或PET扫描中)的成像检测器630。

在一个实施例中,成像源620和成像检测器630可以被联接至数字处理系统625以控制成像操作和处理图像数据。在一个实施例中,诊断成像系统605可以从治疗输送系统615接收成像命令。

诊断成像系统605包括用于在数字处理系统625、成像源620和成像检测器630之间传递数据和命令的总线或其它工具680。数字处理系统625可以包括一个或多个通用处理器(例如,微处理器)、专用处理器,诸如数字信号处理器(DSP)或其它类型的设备,诸如控制器或现场可编程门阵列(FPGA)。数字处理系统625还可以包括其它组件(未示出),诸如存储器、存储设备、网络适配器等。数字处理系统625可以被配置成生成标准格式的数字诊断图像,诸如医学数字成像和通信(DICOM)格式,举例来说。在其它实施例中,数字处理系统625可以生成其它标准或非标准的数字图像格式。数字处理系统625可以通过数据链路683将诊断图像文件(例如,前述的DICOM格式的文件)传输到治疗输送系统615,该数据链路683可以是,例如,直接链路、局域网(LAN)链路或广域网(WAN)链路,诸如互联网。此外,在系统之间传递的信息可以被拉过或推过连接系统的通信介质,诸如在远程诊断或治疗计划配置中。在远程诊断或治疗计划中,虽然在系统用户和患者之间存在物理分离,但是用户可以利用本公开的实施例来诊断或治疗患者。

在一个实施例中,治疗输送系统615包括治疗和/或手术放射源660以根据治疗计划将规定的放射剂量施予目标体积。治疗输送系统615还可以包括成像系统665以执行计算机断层摄影(CT),诸如锥束CT,且由成像系统665生成的图像可以是二维的(2D)或三维的(3D)。

治疗输送系统615还可以包括数字处理系统670以控制放射源660、接收和处理源于诊断成像系统605和/或治疗计划系统610的数据且控制患者支撑设备,诸如治疗床675。数字处理系统670可以被连接到上述相机反馈系统或为其一部分,且对由图1的相机105所捕获的图像进行操作。数字处理系统670可以被配置成从两个或更多立体投影配准从诊断成像系统605接收的2D放射线图像,其具有由诊断成像系统605中的数字处理系统625生成的数字重建放射线照片(DRR)和/或由治疗计划系统610中的处理设备640生成的DRR。数字处理系统670可以包括处理设备,其表示一个或多个通用处理器(例如,微处理器)、专用处理器,诸如数字信号处理器(DSP)或其它类型的设备,诸如控制器或现场可编程门阵列(FPGA)。数字处理系统670的处理设备可以被配置成执行指令以执行治疗输送操作,例如,上面关于图4所述的方法400。

在一个实施例中,数字处理系统670包括系统存储器,其可以包括被联接至处理设备的随机存取存储器(RAM)或其它动态存储设备,其用于存储要由处理设备执行的信息和指令。系统存储器也可以用于在由处理设备执行指令期间存储临时变量或其它中间信息。系统存储器还可以包括用于存储用于处理设备的静态信息和指令的只读存储器(ROM)和/或其它静态存储设备。

数字处理系统670还可以包括存储设备,其表示用于存储信息和指令的一个或多个存储设备(例如,磁盘驱动器或光盘驱动器)。存储设备可以用于存储用于执行本文所讨论的治疗输送步骤的指令。数字处理系统670可以通过总线692或其它类型的控制和通信接口被联接至放射源660和治疗床675。

数字处理系统670可以实施用于管理诊断x射线成像配时以保持目标与由放射源660输送的放射治疗束的对准的方法。

在一个实施例中,治疗输送系统615包括经总线692与数字处理系统670连接的输入设备678和显示器677。显示器677能够显示识别目标移动速率(例如,在治疗中的目标体积的移动速率)的趋势数据。显示器还能够显示患者的当前放射暴露和用于患者的预计放射暴露。输入设备678能够使临床医生在治疗期间调整治疗输送计划的参数。

治疗计划系统610包括用于生成和修改治疗计划和/或模拟计划的处理设备640。处理设备640可以表示一个或多个通用处理器(例如,微处理器)、专用处理器,诸如数字信号处理器(DSP)或其它类型的设备,诸如控制器或现场可编程门阵列(FPGA)。处理设备640可以被配置成执行用于执行本文所讨论的模拟生成操作和/或治疗计划操作的指令。

治疗计划系统610还可以包括系统存储器635,其可以包括通过总线686被联接至处理设备640的随机存取存储器(RAM)或其它动态存储设备,其用于存储要由处理设备640执行的信息和指令。系统存储器635也可以用于在由处理设备640执行指令期间存储临时变量或其它中间信息。系统存储器635还可以包括用于存储用于处理设备640的静态信息和指令的被联接到总线686的只读存储器(ROM)和/或其它静态存储设备。

治疗计划系统610还可以包括存储设备645,其表示用于存储信息和指令的被联接至总线686的一个或多个存储设备(例如,磁盘驱动器或光盘驱动器)。存储设备645可以用于存储用于执行本文所讨论的治疗计划步骤的指令。

处理设备640还可以被联接到显示设备650,诸如阴极射线管(CRT)或液晶显示器(LCD),其用于向用户显示信息(例如,VOI的2D或3D表示)。输入设备655,诸如键盘可以被联接至处理设备640以用于将信息和/或命令选择通信至处理设备640。一个或多个其它用户输入设备(例如,鼠标、轨迹球或光标方向键)也可以用于进行方向信息的通信以选择用于处理设备640的命令并在显示器650上控制光标移动。

治疗计划系统610可以与治疗输送系统,诸如治疗输送系统615共享其数据库,例如存储在存储器645中的数据,以使得在治疗输送之前可能不需要从治疗计划系统输出该数据。治疗计划系统610可以经数据链路690,其在一个实施例中可以是直接链路、LAN链路或WAN链路被链接至治疗输送系统615。

应注意的是,当数据链路683、686和690被实施为LAN或WAN连接时,诊断成像系统605、治疗计划系统610和/或治疗输送系统615中的任一个可以处于分散的位置上,以使得系统可以在物理上彼此远离。替代地,诊断成像系统605、治疗计划系统610和/或治疗输送系统615中的任一个可以在一个或多个系统中彼此整合。

图7和8示出了根据本公开的实施例的图像引导的放射治疗系统700和800的配置。在图示的实施例中,放射治疗系统700和800包括用作放射治疗源的线性加速器(LINAC)701以及MLC壳体100。在一个实施例中,LINAC 701和MLC壳体100被安装在具有多个(例如,5个或更多)自由度的机器人臂702的端部上,以便定位LINAC 701和MLC壳体100以用从患者周围的操作体积中多个平面中的多个角度输送的束来放射病理解剖结构(例如,目标720)。治疗可能涉及具有单个等中心点、多个等中心点或非等中心方式的束路径。替代地,可以使用其它类型的图像引导的放射治疗(IGRT)系统。在一个替代性实施例中,LINAC 701和MLC壳体100可以被安装在基于台架的系统上以提供等中心束路径。在一个特定实施例中,IGRT系统是日本东京的Mitsubishi Heavy Industries Ltd.和德国的BrainLAB AG的联产品VeroSBRT系统(在日本被称为TM200),其利用基于刚性O形环的台架。

在一个实施例中,LINAC 701和MLC壳体100可以在治疗期间通过移动机器人臂735被定位在多个不同的节点处(机器人停止且可以输送放射的预定位置)。在节点处,LINAC701能够将一个或多个放射治疗束输送至目标。节点可以围绕患者按近似球形分布进行布置。节点的特定数量和在每个节点处施加的治疗束的数量可以作为要治疗的病理解剖结构的位置和类型的函数而变化。例如,节点的数量可以从50至300,或更优选地从15至100个节点变化,且束的数量可以从700变化至3200,或更优选地从50至300变化。

参考图7,根据本公开的一个实施例的放射治疗系统700包括成像系统665,其具有与x射线源703A和703B和固定的x射线检测器704A和704B相连接的处理器730。替代地,x射线源703A、703B和/或x射线检测器704A、704B可以是移动的,在这种情况下,其可以被重新定位以保持与目标720的对准,或替代地,用于从不同的取向对目标成像或用于获取许多x射线图像并重建三维(3D)锥束CT。在一个实施例中,如技术人员将理解的,x射线源不是点源,而是x射线源阵列。在一个实施例中,LINAC 701用作成像源(无论是安装了台架还是机器人),其中将LINAC功率级降低到用于成像的可接受水平。

成像系统665可以执行计算机断层摄影(CT),诸如锥束CT,且由成像系统665生成的图像可以是二维的(2D)或三维的(3D)。两个x射线源703A和703B可以被安装在手术室的天花板上的固定位置且可以进行对准以从两个不同的角度位置(例如,分开90度)投射x射线成像束以在机器的等中心点(在本文中被称为治疗中心,其提供了用于在治疗期间将患者定位在治疗床706上的参考点)相交且在穿过患者之后照亮各个检测器704A和704B的成像平面。在一个实施例中,成像系统665提供了对目标720和周围感兴趣体积(VOI)的立体成像。在其它实施例中,成像系统665可以包括多于或少于两个的x射线源以及多于或少于两个的检测器,且检测器中的任一个可以是可移动的而不是固定的。在其它实施例中,x射线源和检测器的位置可以互换。如本领域技术人员众所周知的,检测器704A和704B可以由将x射线转换成可见光的闪烁材料(例如,非晶硅)和将光转换成数字图像的CMOS(互补金属氧化物硅)或CCD(电荷耦合器件)成像单元的阵列制成,其中在将数字图像的坐标系变换成参考图像的坐标系的图像配准过程期间,该数字图像能够与参考图像进行比较。参考图像可以是,例如数字重建放射线照片(DRR),其是基于穿过CT图像投射射线来模拟x射线图像的形成过程而由3D CT图像生成的虚拟x射线图像。

参考图8,在替代实施例中,成像系统810包括运动检测设备814以确定目标运动,该运动检测设备814具有检测场840。运动检测设备814可以检测在850内发生的外部患者运动(诸如,呼吸期间的胸部的移动)。运动检测设备814能够是能够识别目标移动的任何传感器或其它设备。运动检测设备814可以是,例如光学传感器,诸如相机、压力传感器、电磁传感器或能够在不向用户输送电离辐射的情况下提供运动检测的某种其它传感器(例如,除了x射线成像系统的传感器)。在一个实施例中,运动检测设备814实时获取指示目标运动的测量数据。替代地,测量数据可以按比能用x射线成像实现的或比用x射线成像可取的频率(由于用每个x射线图像而输送给患者的电离辐射)更高(可能实质上更高)的频率来进行获取。在一个实施例中,运动检测设备814不提供高绝对位置精度。相反地,运动检测设备814可以提供足够的相对位置精度来检测患者的移动和/或目标的移动。

在一个实施例中,运动检测设备814是光学系统,诸如相机。光学系统可以跟踪位于患者725上的发光二极管(LED)的位置。替代地,光学系统可以直接追踪患者725的表面区域,这区别于跟踪在患者上的LED。目标的移动与患者725的LED和/或表面区域的移动之间可能存在相关性。基于相关性,当检测到LED和/或表面区域的运动时,能够确定目标720也已经进行了充分的移动以要求另一个诊断x射线图像精确地确定目标的位置。

图9示出了基于台架(等中心)强度调制的放射治疗(IMRT)系统900的一个实施例。在基于台架的系统900中,具有头部组件901和MLC壳体100的放射源(例如,LINAC)902以一种方式被安装在台架上,以使得其在对应于患者的轴向切片的平面中旋转。然后,从在圆形旋转平面上的几个位置输送放射。在IMRT中,放射束的形状是由多叶准直器(MLC)限定的,该多叶准直器允许束的部分被阻挡,以使得在患者上入射的剩余束具有预定义的形状。所得到的系统生成具有任意形状的放射束,其在等中心点彼此相交以向目标输送剂量分布。在一个实施例中,基于台架的系统900可以是c型臂的系统。

根据以上描述将显而易见的是,本公开的方面可以至少部分地在软件中进行具体化。即,可以响应于例如,执行包含在存储器中的序列指令的其处理器,诸如数字处理系统670来在计算机系统或其它数据处理系统中执行该技术。在各种实施例中,硬件电路可以与软件指令结合使用以实施本公开。因此,该技术不限于硬件电路和软件的任何特定的组合,也不限于用于由数据处理系统执行的指令的任何特定源。此外,在贯穿整个说明书,可以将各种功能和操作描述为由软件代码执行或由其引起的以简化描述。然而,本领域的技术人员将认识到这样的表达所表示的是该功能是由处理器或控制器,诸如数字处理系统670执行代码而生成的。

机器可读介质能够用于存储软件和数据,当由通用或专用数据处理系统执行时,该软件和数据使得系统执行本公开的各种方法。该可执行软件和数据可以被存储在各种地方,包括例如系统存储器和存储器或能够存储软件程序和/或数据的任何其它设备。因此,机器可读介质包括以机器(例如,计算机、网络设备、个人数字助理、制造工具、具有一组一个或多个处理器的任何设备等)可存取的形式提供(即,存储)信息的任何机制。例如,机器可读介质包括可记录/不可记录介质,诸如只读存储器(ROM)、随机存取存储器(RAM)、磁盘存储介质、光存储介质、闪存设备等。

除非如根据前面的讨论显而易见的另有说明外,否则将理解,术语,诸如“处理”、“计算”、“生成”、“比较”、“确定”、“计算”、“执行”、“识别”等可以指计算机系统或类似的电子计算设备的动作和过程,其将在计算机系统的寄存器和存储器内被表示为物理性(例如,电子)量的数据操纵并变换成在计算机系统存储器或寄存器或其它这样的信息存储或显示设备中被类似地表示为物理性的其它数据。可以使用计算机软件来实施本文所述的方法的实施例。如果用符合公认标准的编程语言进行编写,被设计为实施本方法的序列指令能够进行编译以用于在各种硬件平台上执行以及用于至各种操作系统的接口。此外,本公开的实施例不是参考任何特定编程语言进行描述的。将理解的是,可以使用各种编程语言来实施本公开的实施例。

应注意的是,本文所述的方法和设备不限于仅与医疗诊断成像和治疗一起使用。在替代实施例中,本文的方法和设备可以用于医疗技术领域外的应用中,诸如材料的工业成像和非破坏性测试。在这种应用中,例如,“治疗”通常可以指由治疗计划系统控制的操作的实现,诸如束(例如,放射、声学等)的应用,且“目标”可以指非解剖学对象或区域。

在前面的说明书中,已经参考其特定的示例性实施例描述了本公开。然而,将显而易见的是,在不脱离如在所附权利要求中阐述的本公开的更宽泛的精神和范围的情况下,可以对其进行各种修改和改变。相应地,说明书和附图被认为是具有说明性意义而不是限制性意义。

鉴于下列条款,能够描述本公开的实施例。

1.一种方法,其包括:

用设置在多叶准直器(MLC)的壳体内的照明系统的第一光照亮所述MLC的叶片;

通过所述MLC的孔接收在所述MLC的所述壳体内的环境光;

使用具有位于所述MLC的所述壳体内的光学元件的成像系统捕获用所述第一光和所述环境光照亮的所述MLC的所述叶片的第一图像;

通过处理设备抑制所述第一图像中的所述环境光以生成所述MLC的所述叶片的第二图像;以及

检测在所述第二图像中的所述MLC的所述叶片的特性。

2.根据权利要求1所述的方法,其中抑制在所述第一图像中的环境光包括抑制接近形成所述MCL的所述孔的所述叶片的前缘的环境光。

3.根据权利要求1所述的方法,其还包括使用在所述第二图像中所述检测的特性跟踪所述MLC的叶片的位置。

4.根据权利要求1所述的方法,其中抑制所述环境光以生成所述第二图像包括:

生成用于所述第一图像的衰减图;以及

使用所述衰减图生成所述第二图像。

5.根据权利要求4所述的方法,其中抑制所述环境光以生成所述第二图像还包括在生成所述衰减图之前确定用于所述第一图像的饱和度图,且其中生成所述衰减图包括向所述饱和度图应用一系列形态学和非线性变换。

6.根据权利要求4所述的方法,其中生成所述第二图像包括经像素级乘法向所述第一图像应用所述衰减图。

7.根据权利要求1所述的方法,其中抑制所述环境光包括:

接收第一图像,其中所述第一图像包括第一多个像素,其具有相应的第一多个像素值;

通过对所述第一多个像素值中的每个像素值执行乘法运算来生成第二多个像素值;以及

使用多项式函数生成第三多个像素值,所述多项式函数具有被确定用于实现对饱和度水平的特定响应的系数,其中所述第三多个像素值包括所述第二图像。

8.根据权利要求4所述的方法,其中所述饱和度图包括在像素的颜色和参考颜色之间的在所述第一图像中的在颜色空间中的距离。

9.根据权利要求4所述的方法,其中所述饱和度图为在所述第一图像中的每个像素的颜色饱和度的表示,且其中所述方法还包括:

对所述第一图像执行白平衡运算。

10.根据权利要求9所述的方法,其中执行所述白平衡运算包括:

确定与所述第一图像相关联的感兴趣区域;

为与所述第一图像中的所述感兴趣区域相关联的多个像素中的每一个计算平均红绿蓝(RGB)像素值;

基于所述平均RGB像素值计算强度因子;以及

基于所述平均RGB像素值和所述强度因子计算白平衡参数向量,

对应于在所述第一图像中的所述多个像素的类似位置,对后续图像中的后续多个像素应用所述白平衡参数向量。

11.根据权利要求10所述的方法,其中所述白平衡参数向量是通过像素级乘法来应用的以校正在后续图像中的所述多个像素。

12.根据权利要求4所述的方法,其中生成所述衰减图包括:

为所述第一图像中的像素创建衰减曲线,其中所述衰减曲线由于环境光而使具有高饱和度值的像素衰减,且其中所述衰减曲线不衰减表示所述图像中的准直器叶片位置的像素。

13.根据权利要求12所述的方法,其还包括:

对所述衰减图执行形态学运算以减小在所述衰减图中的噪声和高频伪像。

14.根据权利要求1所述的方法,其中所述照明系统是LED照明系统。

15.根据权利要求1所述的方法,其中所述第一光为白光。

16.根据权利要求1所述的方法,其中所述第一光具有第一主波长,且所述环境光具有第二主波长,且其中所述第一主波长被选定为不同于所述第二主波长。

17.一种放射治疗系统,其包括:

多叶准直器(MLC),其被设置在壳体内;

照明系统,其被设置在所述MLC的所述壳体内以用第一光照亮所述MLC的叶片;

成像系统,其用于捕获用所述第一光和环境光照亮的所述MLC的所述叶片的第一图像;

存储器,其用于存储所述MLC的叶片的多个图像;以及

处理设备,其被操作性地联接至所述存储器,所述处理设备用于:

通过处理设备抑制所述第一图像中的所述环境光以生成所述MLC的所述叶片的第二图像;以及

检测在所述第二图像中的所述MLC的所述叶片的特性。

18.根据权利要求17所述的放射治疗系统,其中为了抑制在所述第一图像中的所述环境光,所述处理设备还用于抑制接近形成所述MCL的孔的所述叶片的前缘的环境光。

19.根据权利要求17所述的放射治疗系统,其中所述处理设备还用于使用所述检测的所述第二图像的特性跟踪所述MLC的叶片的位置。

20.根据权利要求19所述的放射治疗系统,其中所述第一图像包括具有相应的第一多个像素值的第一多个像素,且其中为了抑制所述环境光,所述处理设备还用于:

通过对所述第一多个像素值中的每个像素值执行乘法运算来生成第二多个像素值;以及

使用多项式函数生成第三多个像素值,所述多项式函数具有被确定用于获得对特定类型的所述环境光的响应的系数,其中所述第三多个像素包括所述第二图像。

21.根据权利要求17所述的放射治疗系统,其中所述成像系统包括位于所述MLC的所述壳体内部的光学元件。

22.根据权利要求17所述的放射治疗系统,其中为了抑制所述环境光,所述处理设备还用于:

生成用于所述第一图像的衰减图;以及

使用所述衰减图生成所述第二图像。

23.一种非临时性机器可读存储介质,其包括指令,当由处理设备存取时,所述指令使得所述处理设备:

接收用第一光和环境光照亮的多叶准直器(MLC)的叶片的第一图像;

通过所述处理设备抑制所述第一图像中的所述环境光以生成所述MLC的所述叶片的第二图像;以及

通过所述处理设备检测在所述第二图像中的所述MLC的所述叶片的特性。

24.根据权利要求23所述的非临时性机器可读存储介质,其中为了抑制所述环境光以生成所述第二图像,所述处理设备还用于:

生成用于所述第一图像的衰减图;以及

使用所述衰减图生成所述第二图像。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号