首页> 中国专利> 一种基于电流体动力喷印的微球谐振腔制造方法

一种基于电流体动力喷印的微球谐振腔制造方法

摘要

一种基于电流体动力喷印的微球谐振腔制造方法,涉及光学微腔。将气管连接气泵,给金属储料管中提供熔体聚合物原料;在金属微通道的喷嘴处形成悬滴;将加热器与金属储料管紧密贴合,通过温度控制器调节金属储料管中熔体聚合物原料的温度,再将熔体聚合物原料中加入添加剂,打开高压电源开关,调节电极板电压到‑600V,悬滴由于电场力作用喷射到收集板上,将金属微通道的喷嘴与高压电源接地端联接,电极板与高压电源负压端联接,当高压电源输出规定电压时,金属微通道的喷嘴处液滴以熔体聚合物射流的形式喷印至收集板上,形成与收集板具有一定接触角的微液滴,降温固化后得固相的微球谐振腔。

著录项

  • 公开/公告号CN107632346A

    专利类型发明专利

  • 公开/公告日2018-01-26

    原文格式PDF

  • 申请/专利权人 厦门大学;

    申请/专利号CN201710900923.6

  • 申请日2017-09-28

  • 分类号

  • 代理机构厦门南强之路专利事务所(普通合伙);

  • 代理人马应森

  • 地址 361005 福建省厦门市思明南路422号

  • 入库时间 2023-06-19 04:26:08

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-04-24

    授权

    授权

  • 2018-02-23

    实质审查的生效 IPC(主分类):G02B6/26 申请日:20170928

    实质审查的生效

  • 2018-01-26

    公开

    公开

说明书

技术领域

本发明涉及光学微腔,尤其是涉及一种基于电流体动力喷印的微球谐振腔制造方法。

背景技术

光学微腔是一种尺寸在微米或亚微米量级的光学谐振腔,它利用在折射率不连续界面上的反射、散射或衍射等效应,将光限制在一个很小的区域。基于回音壁模式(ModeGallery Whispering,WGM)的光学微腔是目前研究的热点,按照形状主要分为微球腔、微盘腔、微环腔和微芯环腔等。微球谐振腔具有超高的腔品质因子(大于109)、丰富的回音壁模式、极小的模体积等特点,近年来在低阈值微球激光器、高灵敏度光学传感、非线性光学、腔量子电动力学及量子光学等研究领域引起了广泛关注(Wang>

制作微球谐振腔的方法主要有以下几种,一是采用传统光刻与刻蚀方法制作固相微球腔,这种方法工艺复杂;二是玻璃粉料漂浮高温熔融法,即将玻璃粉末高温雾化,利用熔体的表面张力使其成为玻璃微球,该方法制备效率极高,但所制备的微球腔尺寸较小(60~160μm),并且需要进行微球的固定才能用于实验;三是采用CO2激光器烧蚀石英光纤末端制作微球腔,这种方法制作微球腔时一般需要实时监视成球过程,并且微球腔尺寸受到光纤尺寸的限制。近年来还出现了诸如强磁场冷凝法、超快脉冲激光加工法、玻璃液旋转法、模压法和伽马射线辐照法等制造方法(Yang>

发明内容

本发明的目的在于提供简单、低成本,能高效地制作出尺寸大范围可控的一种基于电流体动力喷印的微球谐振腔制造方法。

本发明包括以下步骤:

1)将气管连接气泵,给金属储料管中提供熔体聚合物原料;

2)在金属微通道的喷嘴处形成悬滴;

3)将加热器与金属储料管紧密贴合,通过温度控制器调节金属储料管中熔体聚合物原料的温度,再将熔体聚合物原料中加入添加剂,调节温度至250±10℃并保持30min,调节气泵压强到0.1MPa,使得金属微通道的喷嘴处形成稳定的小流量的熔体聚合物溶液,打开高压电源开关,调节电极板电压到-600V,悬滴由于电场力作用喷射到收集板上,将金属微通道的喷嘴与高压电源接地端联接,电极板与高压电源负压端联接,当高压电源输出规定电压时,金属微通道的喷嘴处液滴以熔体聚合物射流的形式喷印至收集板上,形成与收集板具有一定接触角的微液滴,降温固化后得固相的微球谐振腔。

在步骤1)中,所述气泵可采用精密气泵;所述给金属储料管中提供熔体聚合物原料是提供稳定的内部压强和小流量熔体聚合物溶液;所述熔体聚合物原料可采用聚甲基丙烯酸甲酯(PMMA)、聚苯乙烯(PS)、聚碳酸酯(PC)等中的一种。

在步骤2)中,所述悬滴可采用一半球形悬滴。

在步骤3)中,所述通过温度控制器调节金属储料管中熔体聚合物原料的温度,是调节温度控制器加热到100℃并保持2~4h;所述添加剂可采用邻苯二甲酸二乙基己酯(DOTP)、三氟乙醇(TFE)等中的一种;所述熔体聚合物原料与添加剂的质量百分比可为30%︰70%。

本发明在加热金属储料管中聚合物原料到熔化温度,通过一精密气泵给金属储料管中熔体聚合物原料提供稳定的内部压强和小流量熔体聚合物溶液,金属微通道喷嘴处形成一半球形悬滴;通过高压电源给金属喷通道喷嘴与收集板之间加上一定的高压,悬滴周围空气介质中将存在高压电场,经金属微通道注入到悬滴内部的大部分电荷迁移到液面层并产生电场力,半球形悬滴受到电场力作用形成泰勒锥,当悬滴弯液面所受电场力足够克服表面张力和粘滞力等约束时,喷嘴处液体喷印至收集板上,形成液滴,降温固化即制作出固相的微球谐振腔。收集板与喷印其上的液滴的接触角与收集板材料的亲疏水性相关,改变收集板材料可以形成具有不同接触角的液滴,另外通过调节金属微通道喷嘴的直径和喷印电压可以改变喷印液滴的体积,即可以通过改变喷嘴的直径、喷印电压以及收集板材料制作出不同直径、不同形状的微球谐振腔。

本发明所述喷印原料为聚苯乙烯(PS)、聚碳酸酯(PC)、聚甲基丙烯酸甲酯(PMMA)等光学上透明的高分子材料,为了降低熔融状态的聚合物原料的粘度以利于EHD喷印,需要加入特定添加剂。

本发明针对微球谐振腔制造设备复杂、成本较高,并且无法有效控制微球腔尺寸等问题,提出了一种基于电流体动力(EHD)喷印的微球谐振腔制造方法。EHD喷印采用电场驱动从液锥顶端拉出微射流,分别形成喷雾、纤维和液滴,对应电喷涂、电纺丝和电喷印三种模式。其具有喷印溶液不易堵塞、不含机械部件使用寿命长等优点,能够实现亚微米分辨率,十分适用于复杂和高精度图案化制造。采用EHD喷印聚甲基丙烯酸甲酯(PMMA)等光学透明材料,并改变接收基底的亲/疏水性,能够方便调节喷一液滴的尺寸和液滴-基底接触角,从而实现尺寸可调、腔体形状可调的微球腔,并且该喷印系统结构简单可靠,成本低廉。

本发明与现有微球谐振腔制造技术相比,其显著优点为:一是制造微球谐振腔的装置结构简单、成本低廉、制造效率高、可重复性强,制备出的微球谐振腔性能稳定;二是通过改变金属微通道喷嘴的直径、喷印电压和收集板材料就可以方便改变喷印液滴的体积和液滴与收集板的接触角,能够制造尺寸可调、腔体形状可控的微球谐振腔;三是可以采用不同种类或不同掺杂的聚合物材料制造微球谐振腔,有利于降低成本和扩大微球谐振腔的适用范围。

附图说明

图1为本发明基于EHD喷印的微球谐振腔制造装置结构示意图。

图2为EHD喷印的微液滴光学显微图像。

具体实施方式

下面结合附图和具体实施方式对本发明作进一步说明。

结合图1和2,气管1连接一精密气泵给金属储料管2中熔体聚合物原料3提供稳定的内部压强和小流量熔体聚合物溶液,金属微通道6喷嘴处形成一半球形悬滴;加热器4与金属储料管2紧密贴合,通过温度控制器5调节储料管2中熔体聚合物原料3温度;金属微通道6喷嘴与高压电源7接地端联接,电极板11与高压电源7负压端联接,当高压电源7输出规定电压时,金属微通道6喷嘴处液滴以熔体聚合物射流8的形式喷印至收集板10上,形成与收集板10具有一定接触角的微液滴9,降温固化后即制作出固相的微球谐振腔12。在图1中,标记GND为接地。

以下给出具体实施例。

将聚甲基丙烯酸甲酯(PMMA)颗粒加入金属储料管中,调节温度控制器加热到100℃并保持2~4h;在聚甲基丙烯酸甲酯中加入邻苯二甲酸二乙基己酯(DOTP),聚甲基丙烯酸甲酯与邻苯二甲酸二乙基己酯的质量百分比为30%︰70%,调节温度到(250±10)℃并保持30min;调节精密气泵压强到0.1MPa使得喷嘴处能够形成稳定的小流量的熔体聚合物溶液,打开高压电源开关,调节电极板电压到-600V,悬滴由于电场力作用喷射到收集板上,收集板采用润湿性较差的材料,厚度为1mm,表面光滑平整,收集板与液滴具有>90°的接触角,降低收集板上液滴温度就使之固化即可制作出固相微球谐振腔。通过施加脉冲电压,并结合X-Y精密平移台控制收集板的位置,可以大批量制作出有序排列的微球谐振腔,图2所示为制作出五个微球谐振腔阵列的光学显微镜图片,图中微球谐振腔12的直径为80μm,形状误差在±100nm以内,能够满足实际应用的需要。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号