首页> 中国专利> 担载核/壳结构的催化剂颗粒的催化剂的制造方法

担载核/壳结构的催化剂颗粒的催化剂的制造方法

摘要

本发明涉及由Cu‑UPD法形成具有核/壳结构的催化剂颗粒的方法。即,一种催化剂的制造方法,所述催化剂为具有核/壳结构的催化剂颗粒担载于载体而得的催化剂,所述核/壳结构具有由铂构成的壳层、以及被所述壳层覆盖且由铂以外的金属构成的核颗粒,所述制造方法的特征在于包括:将担载有所述核颗粒的所述载体在含有铜离子的电解液中电解,使铜析出于核颗粒表面的电解处理步骤;以及通过使铂化合物溶液与析出铜的所述核颗粒接触,从而用铂置换核颗粒表面的铜而形成由铂构成的壳层的置换反应步骤,其中所述置换反应步骤的铂化合物溶液包含柠檬酸。

著录项

  • 公开/公告号CN107405604A

    专利类型发明专利

  • 公开/公告日2017-11-28

    原文格式PDF

  • 申请/专利权人 田中贵金属工业株式会社;

    申请/专利号CN201680014687.1

  • 发明设计人 松谷耕一;海江田武;秋山朋弘;

    申请日2016-03-02

  • 分类号

  • 代理机构北京天昊联合知识产权代理有限公司;

  • 代理人张苏娜

  • 地址 日本东京

  • 入库时间 2023-06-19 03:51:20

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-05-12

    授权

    授权

  • 2017-12-22

    实质审查的生效 IPC(主分类):B01J23/44 申请日:20160302

    实质审查的生效

  • 2017-11-28

    公开

    公开

说明书

技术领域

本发明涉及将具有核/壳结构的催化剂颗粒担载于载体而得的催化剂的制造方法,该核/壳结构具有由铂构成的壳层以及由铂以外的金属构成的核颗粒。具体而言,本发明涉及可用作固体高分子型燃料电池用催化剂、并且在制造效率优异的同时催化剂活性也良好的催化剂的制造方法。

背景技术

燃料电池作为下一代的发电系统备受期待,特别地,以固体高分子作为电解质使用的固体高分子型燃料电池与磷酸型燃料电池等相比工作温度低,并且紧凑,因而被期望用作电动汽车用的电源。在固体高分子型燃料电池中,使用催化剂和固体高分子的混合体作为用于促进电化学反应的电极。

作为用于燃料电池的催化剂,一般而言已知有将作为催化剂成分的铂颗粒担载于碳粉末等导电性物质而成的材料。在此,催化剂的活性归因于铂的存在,但是铂即使在贵金属当中也属于特别昂贵的材料,其使用量决定了催化剂成本,并进而决定了燃料电池的成本。因此,需要降低铂的使用量的催化剂的开发。

关于降低燃料电池用催化剂的铂使用量的方法,有人提出调整所担载的催化剂颗粒的结构的催化剂。具体而言,有人提出这样的催化剂,其中,作为催化剂颗粒的结构,使用这样的核/壳结构,其具有由铂以外的金属构成的核颗粒以及将核颗粒表面被覆的铂壳层。例如,专利文献1中记载了一种催化剂,其以钯或钯合金作为核颗粒,并且采用单原子或半单原子水平的铂层被覆该核颗粒。

现有技术文献

专利文献

专利文献1:日本特表2008-525638号公报

专利文献2:国际公开第2011/099956号小册子

并且,作为制造具有上述核/壳结构的催化剂的方法,人们利用了铜欠电位沉积法(Cu Under Potential Deposition:以下,称为Cu-UPD法)。在利用Cu-UPD法制造核/壳型催化剂的方法中,经由特定的电化学处理,在由钯、钯合金构成的核颗粒表面上被覆铜的单原子层,其后,以铂置换铜从而形成铂层。例如,在硫酸铜溶液等电解液中,以特定条件对将核颗粒担载于适宜的载体上而得的物质进行电解处理,在核颗粒表面形成铜层,通过使其与铂化合物溶液接触,从而通过将铜和铂置换而形成铂壳层。以这种方式在核颗粒上临时形成铜层的理由如下,当想要在核颗粒表面直接析出铂层时,会有形成厚度超过单原子层或半单原子层的铂层的情况,或者会有未被覆核颗粒而在溶液中产生铂析出的情况。

发明内容

发明要解决的课题

Cu-UPD法虽然具有可形成单原子层或半单原子层的适宜厚度的铂壳的优点,但是在对于核颗粒形成铜层时,要求严密的电位管理。这是因为,如上所述,在常规的Cu-UPD法中,基于电位高的金属铂与贱金属铜的单纯的置换反应来形成铂层。因而,成为铂的置换源的铜层需要在极高的水平下均匀。因此,在常规方法中,需要对所有的核颗粒进行均等的电解处理。

例如,在上述专利文献2中,制造由担载核颗粒的碳粉末以及适宜的分散介质构成的油墨,并将其均匀涂布在圆盘电极上并干燥,再浸渍于电解液进行电解(参照图2)。在上述电解中,核颗粒作为工作电极而起作用,铜析出于核颗粒表面。其后,当使铂化合物溶液接触圆盘电极时,铜与铂进行置换,铂壳层形成于核颗粒表面。如此,为了对每一个核颗粒确切且均等地施加电位以形成均一的单层铜层,在圆盘电极涂布少量核颗粒并进行电解处理。

利用常规的Cu-UPD法制造催化剂的目的在于在降低铂的使用量的同时,得到具有良好活性的催化剂,上述目的已经得以充分地实现。然而,在包括如上所述地将少量核颗粒涂布至电极并进行电解的步骤的方法中,每次的催化剂的制造量较少,效率不高。这种方法是实验室的制造方法,而并不适合工业制造。

本发明是在上述背景的基础上完成的,对于通过Cu-UPD法形成具有核/壳结构的催化剂颗粒来制造催化剂的方法,本发明提供这样一种方法,该方法能够提高制造效率并且能够进行大量生产,而且能够制造催化剂活性良好的催化剂。

解决课题的方案

如上所述,常规Cu-UPD法的制造效率低归因于用于对核颗粒形成铜层的电解处理步骤。在常规方法中,通过将少量的核颗粒均匀地涂布、紧密贴合于电极从而确保电位控制的均匀性。这是因为,当使大量的核颗粒接触电极而进行处理时,由于核颗粒与电极的接触变得不均匀,因而在核颗粒间产生电位控制的不均,从而无法使铜层的厚度变为一致。

作为解决上述问题的方法,本发明者等研究并谋求使铜层形成后的铂置换步骤达到最优化。其意图在于,即使在缓和电解处理步骤的电位控制的严密性从而形成了稍微不均匀的铜层的情况下,如果之后的铂的置换变得有效,那么也可以制造作为最终目标的核/壳结构的催化剂颗粒。并且据认为,电解处理步骤的严密性的缓和可导致处理量的增加并提高整体的制造效率。因此,本发明者等进行进一步的研究并发现,通过在用于形成铂层的置换反应步骤中向反应体系添加柠檬酸,从而可以形成有效的铂层。

解决上述问题的本发明为一种催化剂的制造方法,所述催化剂为具有核/壳结构的催化剂颗粒担载于载体而得的催化剂,所述核/壳结构具有由铂构成的壳层、以及被所述壳层覆盖且由铂以外的金属构成的核颗粒,所述制造方法的特征在于包括:将担载有所述核颗粒的所述载体在含有铜离子的电解液中电解,使铜析出于核颗粒表面的电解处理步骤;以及通过使铂化合物溶液与析出铜的所述核颗粒接触,以铂置换核颗粒表面的铜,从而形成由铂构成的壳层的置换反应步骤,其中所述置换反应步骤的铂化合物溶液包含柠檬酸。

如上所述,本发明的特征在于,针对Cu-UPD法,对于在核颗粒上形成铜层之后的铂置换步骤进行了改良。上述改良为:在铂化合物溶液中添加有柠檬酸的状态下进行处理,并具有提高核颗粒表面的铂的被覆率的效果。在常规的未添加柠檬酸的铂置换步骤中,铜与铂直接进行置换。如本发明,通过添加柠檬酸而提高铂的被覆率并进行了最优化的理由是具有这样的反应机理:即柠檬酸居中调节了铜与铂的置换反应,在铜与柠檬酸进行了置换之后,柠檬酸再与铂进行置换。或者据认为是因为,铂化合物溶液中的铂离子形成铂-柠檬酸配合物,从而还原电位发生了变化。

以下,对本发明进行更详细的说明。对于本发明所涉及的催化剂的制造方法,其基本步骤依据Cu-UPD法。利用Cu-UPD法制造催化剂的步骤具备:准备担载于载体的核颗粒;将铜层被覆于该核颗粒表面的电解处理步骤;以及,进行核颗粒表面的铜与铂的置换从而形成铂壳层的置换反应步骤。

核颗粒由铂以外的金属构成。作为该金属,可以使用钯、铱、铑、钌、金或这些金属的合金,并优选使用钯或钯合金。钯作为核颗粒优选的理由是,其化学稳定性优异,并且催化剂活性也可以提高。另外,作为钯合金,可以使用钯-镍合金、钯-铜合金、钯-钴合金、钯-金合金。这些钯合金可以进一步提高催化剂的活性。需要说明的是,当使用钯合金时,对于镍、铜等添加元素的浓度,优选使添加元素与钯的摩尔比(添加元素/钯)为1/1以上1/12以下。另外,核颗粒的平均粒径优选为2nm以上50nm以下。

在本发明中,在核颗粒担载于载体的状态下进行处理。作为载体,可以使用由通常用作催化剂载体的导电性碳粉末或导电性陶瓷粉末等构成的导电性材料。形成核颗粒于载体的方法没有特别的限制,可利用公知的方法。作为例子,可以通过将载体浸渍于构成核颗粒的金属的金属化合物溶液,再对其进行还原处理,从而制造微细的核颗粒。另外,当使核颗粒为合金时,将如上所述而制造的金属颗粒浸渍于成为合金添加元素的金属的化合物溶液,并在还原后进行热处理。或者,可以通过将载体浸渍于构成核颗粒的2种以上的金属的化合物溶液,并在还原后进行热处理,从而形成合金。

对于如上所述而准备的核颗粒,在电解处理步骤中使铜层电解析出于表面。电解处理为将核颗粒配置于工作电极侧,并施加一定的电位从而从电解液析出铜的处理。在此,应当注意的方面是,在本发明的情况下,由于在其后的置换反应步骤中的铂层形成已经谋求了最优化,因而不需要如常规方法一样地对各个核颗粒进行严密且均匀的电位控制。在本发明中,不需要如常规方法一样地使少量核颗粒涂布、紧密贴合于电极,从而可以增大处理量。

作为用于增大该处理量的实施方式,可以为对于电极(工作电极)层积核颗粒(担载有核颗粒的载体)的状态。即使核颗粒没有如同常规方法的涂布、干燥状态一样地紧密贴合,经由载体也可以进行核颗粒的电解。虽然此时各个核颗粒的电位多少有些不均匀,但是在本发明的情况下,即使如此也可以最终形成核/壳结构的催化剂颗粒。例如,在容纳电解液的电解槽中进行电解析出,但是在本发明中,通过导电性材料构成电解槽的底部,并将其作为工作电极,通过层积核颗粒于其上,从而可以处理大量的核颗粒。在这种情况下,即使对于工作电极层积担载有1mg/cm2以上800mg/cm2以下的核颗粒的载体,在本发明中也可以有效地进行处理。另外,在本发明中,也可以使电解槽的容量增大,可在考虑1L以上50L以下的工业制造的电解槽中进行催化剂的制造。

电解处理中的电解液是铜化合物溶液,只要是通常被认为可用于Cu-UPD的溶液即可,并没有特别的限制。作为所使用的铜化合物的优选的具体例子,可列举出硫酸铜、硝酸铜、氯化铜、次氯酸铜、高氯酸铜、草酸铜等。

用于电解析出的电位控制的条件根据核颗粒的金属种类而进行调整。例如,当将钯或钯合金作为核颗粒并被覆铜时,电解条件优选为:将电位固定在0.35V以上0.40V以下(相对于RHE),将电位固定时间设为1小时以上10小时以下。

另外,在该电解处理步骤中,优选使电解液的溶解氧量为1ppm以下。这是因为,若溶解氧较多,则析出的铜可能会发生氧化、溶解,这可能会成为后续与铂的置换反应受到阻碍的原因。需要说明的是,对于电解液的溶解氧量,通常的惰性气体(氮等)的通气难以使其为1ppm以下。作为用于减少溶解氧量的优选的预处理,在氧浓度减少了的封闭空间(优选0ppm)的内部进行4小时以上48小时以下的惰性气体的通气。通过这样做,可以使电解液的溶解氧为1ppm以下。

通过上述的电解处理步骤,形成了核颗粒,该核颗粒形成有铜层,通过使铂化合物溶液与该核颗粒接触,发生铜与铂的置换,从而形成了铂壳层。通过添加铂化合物溶液至电解槽,可以在电解析出步骤之后连续地进行上述置换处理。另外,也可以从电解槽取出核颗粒并浸渍于铂化合物溶液。

铂化合物溶液没有特别的限制,但优选为氯铂酸、氯铂酸钾、氯化四氨合铂、硝酸二氨基二硝基合铂的溶液,特别优选为氯铂酸钾溶液。相对于由Cu-UPD算出的所需铂化合物的摩尔数,优选使溶液中的铂化合物的量为其等倍量以上4倍量以下。需要说明的是,即使对于该铂化合物溶液,也优选使溶解氧量为1ppm以下。

在本发明中,为了谋求使铜与铂的置换反应最优化,需要向铂化合物溶液添加柠檬酸。对于柠檬酸的添加,可以预先将柠檬酸添加到铂化合物溶液,再与核颗粒接触;也可以在使柠檬酸接触核颗粒之后再添加铂化合物。相对于铂化合物的摩尔数,优选使柠檬酸的添加量(摩尔数)为其10倍以上40倍以下。这是因为,若柠檬酸较少,则铂壳的被覆率降低。若超过40倍,则从柠檬酸被覆铂壳从而降低催化剂活性的方面出发,并不优选。

优选将铂置换反应的处理时间确保为30分钟以上。需要说明的是,对于处理温度,不需要特殊控制,可以在常温下进行处理。

通过上述的铂的置换步骤从而形成了具有包括铂壳层的核/壳结构的催化剂。另外,若在核颗粒担载于载体的状态下进行上述步骤,则可以获得具有核/壳结构的催化剂颗粒担载于载体而成的催化剂。需要说明的是,在铂壳层形成后,优选适宜地进行洗净、干燥。

发明效果

如上所述,对于包括电解处理步骤和铂置换处理步骤的利用Cu-UPD法的催化剂制造方法,本发明谋求使铂置换处理步骤最优化,由此使得电解处理步骤的严密的处理条件得以缓和,实现了处理量的增大。根据本发明,可以有效地制造具有核/壳结构的催化剂颗粒。另外,经由本发明制造的催化剂的活性也良好,通过削减铂使用量而来的成本降低效果与催化剂性能提高的平衡性优异。

附图简要说明

[图1]为说明本实施方式所使用的电解装置的构成的图。

[图2]为说明用于制造具有核/壳结构的催化剂颗粒的常规方法的图。

具体实施方式

以下,将对本发明的最优实施方式进行说明。

第1实施方式:在此,制造担载有催化剂颗粒的催化剂,该催化剂颗粒具有以钯作为核颗粒的核/壳结构,并评价上述催化剂的活性。首先,将35g的成为催化剂载体的碳粉末(商品名:Ketjen>3)浸渍于氯化钯溶液(Pd量15g(0.028mol)),并用碳酸钠使溶液为中性。通过甲酸钠对其进行还原处理,从而制造了担载有成为核颗粒的钯颗粒的碳粉末。

然后,在钯颗粒表面被覆铜层。图1示出了本实施方式所使用的电解装置。在图1的电解装置中,在容纳电解液的电解槽中插入有具有铂网格作为对电极的对电极管以及参比电极。电解槽的底部由碳块构成,该碳块作为工作电极而起作用。对电极、参比电极和工作电极均连接到电位控制装置。

在钯颗粒的电解处理中,首先,将6L的硫酸溶液(0.05M)加入至电解槽,并使50g(0.32mol)的硫酸铜溶解于其中,并进行用于减少溶解氧量的预处理。在该预处理中,首先,将氮吹入手套箱,使氧浓度为约0ppm,然后在向其中放置电解装置的同时,进行以下操作12小时:向手套箱内吹入氮并且向电解液通入氮。并且在电解处理前,确认了电解液的溶解氧量为1ppm以下。在电解槽中,将10g如上所述地担载有钯颗粒的碳粉末沉淀于底部,通过电位控制装置进行电位控制从而使铜电解析出。在此的电解条件如下所述。需要说明的是,在该电解处理中,仍然继续以下操作:向手套箱内吹入氮并且向电解液通入氮。

电解条件

·电位:电位固定在0.39V(相对于RHE)

·电位固定时间:3小时

在电解处理步骤之后,将3.4g(0.0083mol)氯铂酸钾作为铂化合物溶液而溶解于电解槽。另外,同时添加48g柠檬酸。由此,发生了钯核颗粒表面的铜与铂的置换反应。将该置换反应步骤的反应时间定为1小时。在铂壳层形成之后,过滤、回收碳粉末,并用纯水洗净,在60℃下干燥,得到催化剂。

上述制造步骤中所得的催化剂为10g。该制造量表示,相比于经由常规的Cu-UPD法的制造量(μg级)而言,在一次的制造步骤中就可以制造100000倍以上的催化剂。

比较例1、2:为了与担载了具有核/壳结构的催化剂颗粒的催化剂做比较,准备了担载了市售的铂颗粒、铂合金颗粒的催化剂。所准备的催化剂为铂催化剂(商品名:TEC10E50E)、铂-钴催化剂(商品名:TEC36E52)。

接着,对于第1实施方式、比较例1、2的催化剂,测定了活性(Mass Activity)。在该评价方法中,使涂布有8μg催化剂的旋转圆盘电极在电解液中旋转,检查氧还原活性。在氧饱和的电解液中,使电极恒定旋转(1000rpm、1250rpm、1500rpm、1750rpm、2000rpm、2250rpm、2500rpm),并以5mV/s的扫描速度测定从0.1V至1.0V所流动的氧还原电流。测定后,以下述方法进行:通过Koutecky-Levich方程近似各旋转速度的0.9V下的电流值,然后从活性支配电流计算出铂的质量活性。将该结果示于表1。

[表1]

从表1可知,相比于比较例中的铂催化剂、铂-钴催化剂,经由本实施方式制造的催化剂表现出极高的氧还原活性。对于本实施方式的制造方法,从所制造的催化剂的特性方面出发,也可以确认为良好。

第2实施方式:在此,使电解处理步骤后的置换还原步骤中所添加的柠檬酸的添加量改变,从而制造了催化剂。使核颗粒为钯-镍合金。在第1实施方案中,将成为载体的碳粉末浸渍于硝酸钯(Pd量53g(0.50mol))和硝酸镍(Ni量176g(3.0mol))的溶液,并用氢氧化钠使溶液为中性。其后,进行热处理从而在碳粉末上形成由钯-镍合金构成的颗粒。接着,将该载体浸渍于0.5M硫酸(80℃)中以除去镍。这种钯-镍合金颗粒的形成以及镍的去除是用于在合金颗粒表面上形成经由镍溶出而造成的细孔,从而提高表面积及活性。

然后,通过与第1实施方式相同的装置、条件,电解析出铜于核颗粒表面。此外,与第1实施方式同样地,向电解后的电解液添加氯铂酸钾和柠檬酸从而形成了铂壳。在该实施方式中,使柠檬酸的添加量改变从而制造了多个催化剂。另外,也制造了未添加柠檬酸而进行处理的催化剂。随后,与第1实施方式同样地,评价了催化剂活性。将该结果示于表2。

[表2]

从表2可以确认,根据柠檬酸添加的有无,催化剂活性产生了差异。优选的柠檬酸的添加量为10倍量以上40倍量以下。

工业实用性

在基于Cu-UPD法的催化剂制造方法中,本发明使铂置换处理步骤最优化,从而实现了催化剂制造量的增大。根据本发明,可以有效地制造具有核/壳结构的活性优选的催化剂,并且也可以期待经由铂使用量的削减而带来的成本降低效果。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号