首页> 中国专利> 用于基于GaN基电源装置的电池充电器的系统架构

用于基于GaN基电源装置的电池充电器的系统架构

摘要

本申请涉及用于基于GaN基电源装置的电池充电器的系统架构。该系统在其输入处使用功率因子修正的控制且在其输出处使用恒定电流/恒定电压调节,来利用用于电源转换的有功电子电路。具体地,提出了一种通用GaN基电池充电器架构,其用于使用三相230V变频或三相115V恒定频率AC输入电源二者之一,对低压电池或高压电池二者之一充电,同时满足严格的电力质量和电磁干扰航空航天要求。

著录项

  • 公开/公告号CN107248774A

    专利类型发明专利

  • 公开/公告日2017-10-13

    原文格式PDF

  • 申请/专利权人 波音公司;

    申请/专利号CN201710107803.0

  • 发明设计人 E·V·索洛多夫尼克;K·J·卡里米;

    申请日2017-02-27

  • 分类号H02J7/02(20160101);

  • 代理机构11127 北京三友知识产权代理有限公司;

  • 代理人吕俊刚;杨薇

  • 地址 美国伊利诺伊州

  • 入库时间 2023-06-19 03:28:47

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-08-06

    授权

    授权

  • 2019-03-22

    实质审查的生效 IPC(主分类):H02J7/02 申请日:20170227

    实质审查的生效

  • 2017-10-13

    公开

    公开

说明书

技术领域

本公开总体涉及用于电池的充电装置,具体地涉及用于飞机(airplane)上的电池的充电装置。

背景技术

商用飞机使用不同技术的电池和对应的电池充电器。各充电器采用对应于特定电池技术的充电算法和适合特定输入电源的电源转换架构。过去,在商用航空中,输入电源总是115V AC和恒定的400Hz频率,而取决于所用的低压电池技术充电器电池输出总是在24VDC与32V DC之间。例如,将三相115V AC电源转换成28V DC电源的传统充电器以在87%至89%的范围内的电源转换效率来使用。充电器输出电压的不重要变化和用于输入电源的单个标准允许再用传统充电器设计,微调充电逻辑,以满足特定电池技术。

近来航空航天工业在减少燃料燃烧和CO2排放、减轻重量以及提高总效率的趋势,已经导致新的更高电压输入电源的引入,该更高电压输入电源也变成变频(VF)电源。另外,电池技术的发展和将更高DC电压用于重量减轻的工业趋势,促进高压电池在许多应用(76V、270V、540V等)中的使用。工业的这些变化结合电力电子装置的大发展(例如,宽带间隙SiC和GaN基电源开关的商业可用性),使得能够为了设计比传统充电器设计更轻且更高效的新通用充电器架构而重新考虑(revisit)传统电池充电器设计。另外,对于成本效率,该充电器必须能够在对不同电池(包括传统(24和32V>

鉴于变频电源、更高电压以及不同电池技术引入更新的飞机架构中,有利的是,设计可以在所有常见电源系统架构中操作且可以对所有电池(传统的或高压的二者之一)充电的新通用电池充电器。

发明内容

下面详细公开的主题致力于,用于采用氮化镓基晶体管(下文中“GaN基电源开关”)的电池充电器的轻且高效系统架构。所提出的系统在其输入处使用功率因子修正的控制,且在其输出处使用恒定电流/恒定电压调节,来利用用于电源转换的有功电子电路。具体地,本公开提出了一种通用GaN基电池充电器架构,其用于从三相230V变频或三相115V400Hz恒定频率AC输入电源二者之一对低压电池或高压电池二者之一充电,同时满足严格的电力质量和电磁干扰(EMI)航空航天要求。

这里所公开的通用电池充电器可以在所有常见飞机电源系统架构中操作,并且可以对所有电池(传统的或高压的二者之一)充电。另外,这里所公开的新充电器采用宽带间隙GaN基电源开关,该电源开关具有高频切换能力,这允许减小滤波器和变压器的尺寸并减轻滤波器和变压器的重量。

这里所提出的解决方案提供了提高的功能,减轻了电池充电器的重量,减小了电池充电器的尺寸,具有由于使用GaN基电源开关而产生的提高的效率,并且借助于能够将单个常见零件用于不同的飞机电池架构而节省成本。更具体地,这里所提出的电池充电器在与传统电源系统架构和传统电池可兼容的同时,通过使用更先进的电源系统架构(诸如三相230V AC、VF输入电源以及高压电池)来使得能够减轻重量并减小尺寸。所提出的电池充电器还借助于使用GaN基电源装置而将电源转换效率提高到95%至96%。GaN基电源开关的另外优点是,它们可以以比传统Si装置更高的频率切换,这使得对于用于充电器的输入和输出EMI滤波器的磁性材料能够显著节省重量。

下面详细公开的主题的一个方面是一种电池充电器,该电池充电器包括:第一DC链路导体和第二DC链路导体;AC至DC整流器,所述AC至DC整流器连接至所述第一DC链路导体和所述第二DC链路导体,并且被配置为将AC电压转换成跨所述第一DC链路导体和所述第二DC链路导体的DC链路电压;DC至DC转换器,所述DC至DC转换器包括:第一对输出端子和第二对输出端子;第一输入端子和第二输入端子,所述第一输入端子和所述第二输入端子连接到所述第一DC链路导体和所述第二DC链路导体;第一开关,所述第一开关连接到所述第一对输出端子中的一个;以及第二开关,所述第二开关连接到所述第二对输出端子中的一个,其中,所述DC至DC转换器被配置为,当所述第一开关闭合且所述第二开关断开时,根据所述DC链路电压来输出用于对连接到所述第一对输出端子的低压电池进行充电的DC电流,并且所述DC至DC转换器还被配置为,当所述第一开关断开且所述第二开关闭合时,根据所述DC链路电压来输出用于对连接到所述第二对输出端子的高压电池进行充电的DC电流。在所公开的实施方式中,所述DC至DC转换器还被配置为,当所述第一开关闭合且所述第二开关断开时在谐振转换器模式下操作,并且当所述第一开关断开且所述第二开关闭合时在降压转换器(buck converter)模式下操作。所述AC至DC整流器包括Vienna式升压整流器。优选地,所述AC至DC整流器和所述DC至DC转换器这两者包括多个氮化镓基晶体管。

另一方面是一种电池充电器,该电池充电器包括:第一DC链路导体和第二DC链路导体;Vienna式升压整流器,所述Vienna式升压整流器连接至所述第一DC链路导体和所述第二DC链路导体,并且被配置为将AC电压转换成跨所述第一DC链路导体和所述第二DC链路导体的DC链路电压;DC至DC转换器,所述DC至DC转换器包括:第一对输出端子和第二对输出端子;第一输入端子和第二输入端子,所述第一输入端子和所述第二输入端子连接到所述第一DC链路导体和所述第二DC链路导体;第一开关,所述第一开关连接到所述第一对输出端子中的一个;以及第二开关,所述第二开关连接到所述第二对输出端子中的一个,其中,所述DC至DC转换器在所述第一开关闭合且所述第二开关断开时,能够在谐振转换器模式下操作,并且所述DC至DC转换器在所述第一开关断开且所述第二开关闭合时,能够在降压转换器模式下操作。

下面详细公开的主题的另外方面是一种DC至DC转换器,所述DC至DC转换器包括:第一对输出端子;第一输入端子和第二输入端子;第一开关,所述第一开关连接至所述第一对输出端子中的一个;多个电源开关,所述多个电源开关跨第一输入端子和第二输入端子串联连接;第一接头,所述第一接头由各电导体连接至串联连接的电源开关中的至少一个,连接到第二输入端子,并且连接到第一对输出端子中的一个;第二接头,所述第二节头沿着连接电源开关中的两个的电导体布置;串联件,所述串联件联接第一接头和第二接头,串联件包括电感器、变压器的初级绕组和第一电容器;第三接头,所述第三接头由各电导体连接至第一电容器、第一开关以及变压器的初级绕组;以及第二电容器,所述第二电容器将第一对输出端子中的第一输出端子联接至第一对输出端子中的第二输出端子,其中,第一开关布置在第三接头与第一对输出端子中的第二输出端子之间,并且所述DC至DC转换器被配置为在第一开关闭合时在降压转换器模式下操作。在下面公开的实施方式中,所述DC至DC转换器还包括:第二对输出端子;第四接头;第二开关,所述第二开关布置在所述第四接头与第二对输出端子中的第一输出端子之间;串联连接的变压器的第一次级绕组和第二次级绕组;第一晶体管,所述第一晶体管布置在所述第一次级绕组与所述第四接头之间;以及第二晶体管,所述第二晶体管布置在所述第二次级绕组与所述第四接头之间,其中,所述DC至DC转换器被配置为在所述第一开关断开且所述第二开关闭合时在谐振转换器模式下操作。

下面公开适于对不同类型的飞机电池充电的电池充电器架构的其他方面。

附图说明

图1是标识根据一个架构的通用电池充电器的主要部件的框图。

图2是示出了根据一个实施方式的通用GaN基电池充电器电路拓扑的电路图。

图3是示出了在电池充电器用于对传统28V DC电池充电时,图2中描绘的通用GaN基电池充电器电路拓扑的状态的电路图。

图4是示出了在电池充电器用于对高压270V DC电池充电时,图2中描绘的通用GaN基电池充电器电路拓扑的状态的电路图。

图5是示出了根据一个实施方式的、图2中描绘的通用GaN基电池充电器电路拓扑的部分和表示用于控制该GaN基电池充电器电路的控制架构的块的混合图。

图6是示出了用于将三相AC电源转换成用于使用图5中描绘的电池充电器电路拓扑和控制架构来对电池充电的DC电流的过程的步骤的流程图。

下文中将参照附图,在附图中,不同附图中的类似元件具有相同的附图标记。

具体实施方式

下面相当详细地描述电池充电系统的例示性实施方式。然而,不是实际实施方案的所有特征都在在本说明书中描述。本领域技术人员将理解,在任意这种实施方式的开发中,必须进行多个实施方案特定的决策,以实现开发者的具体目标,诸如符合将从一个实施方案到另一个实施方案变化的系统相关和商业相关限制。而且,将理解,这种研制计划可能复杂且耗时,虽然如此,但这种研制计划是具有本公开权益的本领域普通技术人员的日常任务。

本公开提出了一种用于适于航空航天应用的通用电池充电器的系统架构。所提出的电池充电器利用有功电子电路和控制,来有效调节充电器的输出电压和电流,这实现轻微的电压和电流调节,以满足电池充电要求。所提出的通用电池充电器可以与传统24V或32V DC电池或与高压200V至320V DC电池一起使用。充电器还可以用于到充电器的输入电源是三相恒定频率115V AC、400Hz电源的传统飞机中,或者用于到充电器的输入电源是三相220V AC至260V AC、变频(360Hz至800Hz)电源的飞机电池架构中。这种多功能性带来许多类型飞机之间的通用性,并且使得成本能够降低。充电器使用在高切换频率下可以非常高效地操作的GaN基电源装置,这使得能够减小EMI滤波器的尺寸,并减轻EMI滤波器的重量。所提出的电池充电器满足包括电力质量和EMI的所有航空航天要求。

这里所提出的架构采用双功率级方法(two-power-stage approach),该双功率级方法包括:有源前端,和提供宽输入和输出电压范围且满足严格效率要求的DC至DC转换器。更具体地,所提出的双功率级拓扑可以被实施为,与三电平DC至DC转换器级联的三电平AC至DC Vienna升压整流器。另外,提出了控制方案。根据控制方案,前端功率级用于通过控制DC链路电压来控制充电电流。目标是根据电池上的负载来改变DC链路电压。

DC至DC转换器的主要功能是,理想地以100%效率来变换DC电压和电流电平。该功能可以由理想DC变压器在模型中表示。DC变压器模型具有等于静态电压转换比的有效匝数比。该变压器除了它可以通过DC电压和电流之外服从变压器的所有常见特性。由此,这里公开的DC至DC转换器表现为以最佳操作点操作的DC变压器。DC至DC转换器的电压增益可调节,以在电池的给定电压变化下将DC链路电压维持在最小阈值以上。以实现更低切换损耗以及更低无源容量和重量的等效双频(equivalent double-frequency)来调制三电平DC至DC转换器。术语“等效双频”意指,各单个电源装置以一个特定切换频率(例如,1MHz)操作,但所有开关连接到的变压器看到是各单个电源装置的操作切换频率的两倍的频率(例如,2MHz)。因此,由于用于变压器的更高等效频率,可以在各单个电源装置不必以非常高的频率操作时使得等效频率更小。

图1中呈现了具有上述双功率级拓扑的通用电池充电器10的一般结构。电池充电器10包括:三个输入端子,所述三个输入端子接收相对于共同参考具有相同频率和电压幅度但具有三分之一时段的相差的各交流电A、B以及C;输入滤波器12,该输入滤波器12对交流电A、B以及C进行滤波,并且输出被设计为帮助满足电力质量和MEI要求的交流电a、b以及c;三电平AC至DC Vienna升压整流器14(下文中,称为“Vienna升压整流器14”),该Vienna升压整流器14确保电池充电器的功率因子接近于一致;DC链路16;以及三电平DC至DC转换器18,该三电平DC至DC转换器18调节用于电池20的充电电压和充电电流。(所调节的输出电压和充电电流将分别由下面描述的图6中的参数Vout和Ibat来表示。)Vienna升压整流器14的温度部分由于热量到散热器22中的传导而被维持在期望的等级。类似地,DC至DC转换器18的温度部分地由于热量到散热器24中的传导而被维持在期望的等级。

Vienna升压整流器的结构和操作是众所周知的。Vienna整流器是单向三相三开关三电平脉宽调制(PWM)整流器。Vienna整流器可以被视为具有集成升压转换器的三相二极管电桥,该集成升压转换器具有一致的功率因子,担任如下接口,该接口用于通过降低无功功耗来确保高能效,且供给电流谐波而且维持恒定DC母线电压(下文中“DC链接电压”)。

图2中以高电平示出了根据具有图1中所示的架构的一个实施方式的电池充电器的电路拓扑。图2中所示的电路被设计为使重量最小化且使效率最大化。图2中所描绘的电池充电器的前端是Vienna升压整流器14,该Vienna升压整流器14包括:如图2中所示连接的三个输入电感器42、六个二极管44、由三对GaN基电源开关构成的开关网络40、以及两个电容器46和48。后端包括DC至DC转换器18。DC至DC转换器18的输入端子32和34分别连接到DC链路导体30a和30b,这形成图1中所识别的DC链路16。

如图2中看到的,DC链路30a将DC至DC转换器18的输入端子32连接到Vienna升压整流器14内部的接头26,而DC链路30b将DC至DC转换器18的输入端子34连接到Vienna升压整流器14内部的接头28。电容器46的端子分别连接到接头26和中点节点M,而电容器48的端子分别连接到接头28和中点节点M。

在图2中所描绘的实施方式中,各输入电感器42可以借助于开关网络40的各对串联连接的GaN基电源开关来选择性地连接到中点节点M。将各输入电感器42连接到开关网络40的各对GaN基电源开关的各电导体如图2所示的由各二极管44连接到接头26和28。该三电平拓扑降低开关网络40的GaN基电源开关上的电压应力(voltage stress),允许输入电感器42在值和尺寸上减小,产生更少的电磁干扰,并且允许高效整流。

仍然参照图2,DC链路导体30a和30b连接到DC至DC转换器18的输入端子32和34。DC至DC转换器18包括:由串联连接的多个高电源(例如,600V-650V)GaN基电源开关60a-60d构成的开关网络60,GaN基电源开关60a的一个端子连接到输入端子32,并且GaN基电源开关60d的一个端子经由接头82连接到输入端子34。

DC至DC转换器18还包括高频变压器68,该高频变压器68在转换器以谐振转换器模式操作时,提供转换器输入与输出之间的DC绝缘(稍后参照图3描述)。在图2中所描绘的实施方式中,变压器68具有串联连接的初级绕组和两个次级绕组。并联电感器65与初级绕组并联连接。高频变压器68的初级绕组的一个端子经由电感器64而联接到GaN基电源开关60b与60c之间的接头。高频变压器68的初级绕组的另一个端子如图2中所看到的经由接头84和电容器66联接到接头82。接头82和84还在闭合开关K2时经由开关K2和电容器86联接到彼此。一对输出端子88和90被设置为连接到高压(例如,270V)电池(图2中未示出)。输出端子88布置在接头82与电容器86之间,而输出端子90布置在电容器6与开关K2之间。

DC至DC转换器18还包括:一对输出端子76和78,该对输出端子76和78用于连接到低压(例如,28V)电池(图2中未示出);和一对MOSFET晶体管70和72,该对MOSFET晶体管70和72分别布置在接头74与高频变压器68的串联连接的次级绕组的相对端子之间。MOSFET晶体管70和72被控制为,使得它们对变压器68的次级绕组上的AC信号进行同步整流。开关K1布置在接头74与输出端子76之间,而输出端子78连接到布置在串联连接的次级绕组之间的接头92。另外,DC至DC转换器18包括电容器80,该电容器80具有:连接到布置在开关K1与输出端子76之间的接头94的一个端子;和连接到位于接头92与输出端子78之间的接头96的另一个端子。电容器80充当低通滤波器。

DC至DC转换器18可借助开关K1和K2来重新配置。当开关K1闭合且开关K2断开时,充电器被配置为对传统电池充电。更具体地,DC至DC转换器18使用高频变压器68来将DC链路电压(即,跨输入端子32和34的电压)转换成跨输出端子76和78的调整DC电压。相反,当开关K1断开且开关K2闭合时,充电器被配置为对高压电池充电。更具体地,DC至DC转换器18将DC链路电压转换成跨输出端子88与90的调整DC电压(高频变压器不用于该配置中)。例如,DC至DC转换器18能够在开关K1闭合且开关K2断开时产生用于对连接到输出端子76和78的28V电池充电的50A充电电流,或者在开关K1断开且开关K2闭合时产生用于对连接到输出端子88和90的270V电池充电的5.5A充电电流。

图3是描绘了当被配置为用于对传统电池充电的28V DC/50A输出时的电池充电器的电路图。在该配置(即,开关K1闭合且开关K2断开)中,充电器担任谐振转换器18a,该谐振转换器18a允许零电压切换,以降低装置切换损耗并提高转换效率。因为各电源开关60a-60d在跨开关的电压为零时,从闭合(ON)状态过渡到断开(OFF)状态或从断开状态过渡到闭合状态,所以零电压切换还减轻EMI。在谐振转换器配置中,由于大输入与输出电压比高频变压器68是必要的。高频变压器68优选地具有减小其覆盖区的平面设计(即,在芯在顶部的情况下,绕组印制到多层印刷电路板上)。高频变压器68的次级绕组提供高电流输出。因此,两个次级绕组可以用于提高效率并使端子限制最小化。变压器芯被选择为,使在高切换频率下的芯损耗最小化。在高频变压器68的次级绕组上,同步整流用于进一步降低损耗。

谐振DC至DC转换器18a依赖可操作的DC链路电压。DC链路电压由来自三相AC系统的升压整流器14产生。这样,谐振DC至DC转换器18a依赖三相AC电压。

在谐振转换器中,串联连接的电感器64和电容器66的谐振电路用于实现转换器的电源装置的零电压切换。当电源装置从闭合状态过渡为断开状态时,产生切换功率损耗(以及对应的低效和发热),反之亦然。然而,如果在闭合断开(ON-OFF)过渡期间,跨装置的电压为零,则因为功率等于电压和电流的乘积(P=V*I),所以开关功率损耗也是零。因此,如果V=0,那么P=0,并且不存在开关损耗。这是所有谐振转换器尝试实现的结果。然而,零电压切换是理想情况。实际上,电压切换实际上不为零(但远远低于全电压)。由于转换器负载变化,理想谐振操作点将总是移动,因此转换器将几乎从不在理想操作点处操作。可以通过使用变压器初级线圈(由特殊绕组技术)中的更小漏电感来加宽谐振转换器的“理想”操作。因此,谐振转换器多数时间在良好、几乎理想的谐振条件下操作。

谐振DC至DC转换器18a包括:连接到变压器68的初级线圈侧的总共四个开关60a-60d。四个开关的原因是因为DC链路电压高,并且单个侧向GaN装置无法处理该高压。因此,DC至DC转换器18a每支路具有串联的两个GaN装置,因此整个DC链路电压在所有这些装置之间划分。由此,三电平拓扑用于初级线圈侧上。当电源装置在正电压与零之间和在零与负电压电平之间切换时,减小装置上的电压应力。

根据另外的特征,变压器68的次级线圈上的谐振DC至DC转换器18a使用MOSFET晶体管70和72来执行同步整流。这通过使用二极管(因为其更高效)具有优点。二极管具有p-n结,因此,它们具有固定压降,这导致二极管中的功率损耗。MOSFET晶体管具有通道。该通道不具有固定压降,相反在通道导通(ON)时充当电阻器。因此,如果并联的MOSFET数量增加,则与普通二极管相比,可以减小通道电阻,并且改善损耗。这是为何使用同步整流的原因。然而,同步整流需要MOSFET的有源控制,因此与使用二极管相比,该控制的复杂度更大。

图4是描绘了当被配置为用于产生用于对高压电池充电的270V DC/5.5A输出时的电池充电器的电路图。在该配置(即,开关K1断开且开关K2闭合)中,充电器担任降压转换器(buck>

降压转换器18b产生幅度可经由占空比控制的DC输出电压Vout。转换比Mbuck被定义为,在稳态条件下DC输出电压(即,Vout)与DC输入电压(即,Vdc)的比。DC输出电压V可通过调节占空比来控制。因为转换器输出电压v(t)是开关占空比的函数,所以可以提供改变占空比以使得输出电压遵循给定参考的控制方案。

图5是示出了根据一个实施方式的、图2中描绘的通用GaN基电池充电器电路拓扑的一部分(未示出开关K1和K2,以减少附图中的杂乱)和表示用于控制电池充电器电路的控制架构的块的混合电路框图。控制策略如下。

在电池的充电期间,电池恒压(CV)/恒流(CC)控制器54被配置为防止电池的过充。充电间歇地发生;充电系统总是连接到在飞机上机载的电池。在充电器电压被维持为恒定时,恒压是充电器操作模式;在充电器电流被维持为恒定时,恒流是充电器操作模式。电池CV/CC控制器54向DC链路电压和平衡控制器52输出参考DC电压Vdc_ref。平衡控制器52维持中点M电压平衡(即,跨顶电容器46和底电容器48的电压被确定处于相同电平)。参考DC电压Vdc_ref根据负载要求而变化。DC链路电压和平衡控制器52向相位电流控制器50输出参考电流Id_ref,该参考电流是参考DC电压Vdc_ref与跨DC至DC转换器18的输入端子32和34的DC链路电压Vdc之间的差的函数。相电流控制器50然后向晶体管栅极驱动器(未示出)输出脉宽调制(PWM)电流(由图5中的箭头PWM来指示),该晶体管栅极驱动器连接到开关网络40的GaN基电源开关,以迫使三相AC负载中的电流跟随参考信号。通过将命令与所测的相位电流的瞬时值进行比较,相电流控制器50生成用于开关网络40的GaN基电源开关的切换状态,以便控制DC链路电压Vdc。另外,前端级调节充电器的输入电流,以实施功率因子修正。

脉宽调制是可以用于控制提供给电气装置的电源的调制技术。通过以快速率闭合和断开电源与负载之间的开关来控制被馈送到负载的电压(和电流)的平均值。与断开阶段相比开关闭合越长,提供给负载总电源越高。术语“占空比”描述了闭合时间与有规律间隔或时间“段”的比例;因为电源在多数时间内关闭,所以低占空比对应于低电源。PWM的主要优点是切换装置中的功率损耗非常低。当开关断开时,实际上没有电流,并且当开关闭合且电源被传输到负载时,跨开关几乎没有电压降。作为电压和电流的乘积的功率损耗由此在两种情况下都接近于零。

根据这里所公开的二级电池充电器的一个实施方式,使用空间矢量脉宽调制(SVPWM)。空间矢量脉宽调制是用于多相位AC生成(在其中,定期采样参考信号)的PWM控制算法;在各采样之后,为了将参考信号同步为所用矢量的平均数,对于适当部分的采样时段,选择与参考矢量和零切换矢量中的一个或更多个零切换矢量相邻的非零有效切换矢量。

DC至DC转换器18操作为DC变压器(DCX,其中,X代表等效DC变压器匝数比(电压增益))。开关网络60的状态受DCX控制器56控制,DCX控制器以DCX模式而被编程为,产生使得变压器68能够在最佳操作点操作的可调电压转换比。更具体地,DCX控制器56向连接到开关网络60的开关60a至60d的晶体管栅极驱动器(未示出)输出PWM电流(由图5中的箭头PWM指示)。

对于这里所公开的电池充电器的实施方案,GaN基宽带间隙装置用于使电路和控制算法的优点最大化。例如,开关网络40的GaN基电源开关的快速切换允许输入电感器42和EMI滤波器12(参见图1)的尺寸减小和重量减轻。与GaN基电源装置关联的低切换损耗使得实现高切换速度下的高效率。GaN基电源开关网络40用于三电平电路拓扑,这允许使用升压电路,该升压电路降低穿过输入电感器42的电流电平,因此减轻通用充电器的重量,减小通用充电器的尺寸,并且降低通用充电器的成本。开关网络40的GaN基电源开关的高切换频率还使得可以将有源谐波取消技术用于高功率电路中。

图6是示出了的过程100的步骤的流程图,该过程100用于将三相AC功率转换成DC电流Iba,该DC电流Iba用于使用图5中描绘的电池充电器电路拓扑和控制架构来对电池充电。电池CV/CC控制器54(参见图5)内部的第一加法器102形成:电池充电DC电流Ibat和参考充电电流Icc_ref的倒数的和,该和被输入到将电流值转换成电压值的比例积分控制器104。电池CV/CC控制器54内部的第二加法器108形成:比例积分控制器104的输出和被前馈到电池CV/CC控制器54的整流器的输入电压106(Vforward)的和。第二加法器108的输出是参考DC电压Vdc_ref,该参考DC电压Vdc_ref充当用于由Vienna升压整流器输出的DC链路电压Vdc的参考信号。

中间DC电压被输入到DC链路电压和平衡控制器52(参见图5),该DC链路电压和平衡控制器52执行DC链路控制方案10,以输出参考DC电压Vdc_ref。DC链路电压和平衡控制器52包括加法器112,该加法器112形成参考DC电压Vdc_ref和DC链路电压Vdc的和,该和被输入到比例积分控制器114,该比例积分控制器114将电压值转换成表示Vienna升压整流器14的参考d轴电流的参考电流值Id_ref。如图5中看到的,参考电流值Id_ref被输入到相位电流控制器50。

在该时刻,解释下面所用的术语“d轴”和相关术语可以是有帮助的。在电气工程中,直接正交变换是为了简化三相电路的分析而使三相系统的参考系旋转的数学变换。在平衡三相电路的情况下,直接正交变换的应用将三个AC量(像电压和电流)转换成两个DC量。然后可以在执行恢复实际三相AC结果的逆变换之前,对这些DC量进行简化计算。直接正交变化的使用简化用于到Vienna升压整流器的三相输入的控制的计算。直接正交变化作为DC链路电压和平衡控制器52的一部分来实施,该DC链路电压和平衡控制器52将所有感测的AC变量实时转换到直接正交域中。因此,在图6中,dd是d轴控制器的占空比;dq是q轴控制器的占空比;Id是d轴电流;Iq是q轴电流(在即时应用中等于零);Gid(s)是将d轴占空比PWM转换成d轴电流的转移函数;Gv_id(s)是将d轴电流Id转换成DC链路电压Vdc的转移函数。

现在将参照图6来描述从DC链路电压和平衡控制器52接收参考电流值Id_ref的相位电流控制器50的部件。相位电流控制器50包括:形成参考电流值Id_ref和d轴电流Id的和的加法器116,该和被输入到将电流值转换成占空比dd的比例积分控制器118。空间矢量脉宽调制(SVPWM)块120向开关网络40(参见图1)的GaN基电源开关输出脉宽调制(PWM电流),以迫使三相AC负载中的电流遵从以下参考信号。更具体地,SVPWM块120从锁相环(PLL)接收占空比dd和dq以及信号,并且创建如下占空比输出,该占空比输出然后被馈送到转而创建d轴电流Id的转移函数Gid(s)。在这种情况下,q轴电流Iq被设置为零。这是为何图6中未示出q轴支路(该q轴支路类似于d轴支路)的原因。占空比dq被设置为零;q轴电流Iq控制功率因子。如果Iq(或dq)被设置为零,则可以实现一致功率因子。然后由转移函数Gv_id(s)将d轴电流转换成DC链路电压Vdc。通过将命令与所测的相位电流的瞬时值进行比较,相电流控制器50生成用于开关网络40的GaN基电源开关的切换状态,以便控制DC链路电压Vdc。DC链路电压Vdc由DC至DC转换器18的DCX控制方案126来使用。

控制器工作方式如下。DC至DC转换器18在恒定占空比中工作(即,DC至DC转换器18由固定比将输入DC链路电压Vdc缩小为输出电池电压Vout)。DC至DC转换器18不进行电池电流Ibat的任何控制,相反取决于表示恒定电压模式或恒定电流模式二者之一的转移函数的电池模式128。电池充电需要的充电电流是Icc_ref。该电流通过控制DC链路电压Vdc来控制。DC链路电压越低,电池充电电流将越低。因此,基于所需的充电电流,计算用于DC链路电压的参考Vdc_ref,然后将该参考与实际DC链路电压Vdc比较。控制器基于电池充电电流需要来调节由Vienna升压整流器输出的DC链路电压,同时通过将q轴电流设置为零来维持整流器输入处的一致功率因子。

现在将为了例示的目的而描述根据一个实施方式的控制方案。这些限制如下:(a)DC输出:28V/50A(范围:20-33.6V)和270V/5.5A(范围:180-302V);(b)AC输入:115V或235V相位电压。正常条件如下:(a)整流器控制柔性DC链路电压:下限606V、上限800V;和(b)DC至DC转换器担任DC变压器,该DC变压器具有用于谐振28V模式的固定转换比Mresonant和用于降压270V模式的Mbuck

为了促进28V谐振模式下的20V至33.6V变化,当参考DC电压Vdc_ref>606V时,Mresonant被固定为维持用于谐振模式的最大效率的标称值。如果参考DC电压Vdc_ref接近于606V,则降低电压转换比Mresonant,以防止DC链路电压Vdc降低。频率与其谐振点偏离。同步整流损耗稍微增加。

为了促进270V降压模式下的180V至302V变化,当参考DC电压Vdc_ref>606V时,Mbuck被固定为维持用于降压模式的最大效率的标称值。如果参考DC电压Vdc_ref接近于606V,则减小降压模式下的占空比,以保持DC链路电压Vdc高于606V。

总之,已经提出了用于双功率级电池充电器系统的控制方案。前端级用于通过控制DC链路电压来控制充电电流。DC至DC转换器级简单地表现为在最佳操作点处操作的DC变压器。DC至DC转换器级的电压增益可调节,以在电池的给定电压变化下将DC链路电压维持在最小阈值以上。以实现更低切换损耗以及更低无源容量和重量的等效双频,来调制谐振转换器模式的三电平DC至DC转换器。

升压整流器14使用可以在MHz频率范围内切换的GaN电源装置。这允许电感器、变压器以及电容器的重量减轻和尺寸减小。然而,MHz频率切换伴随许多挑战。在可以仅切换数十kHz的传统Si电源装置设计的情况下不存在这些挑战。因为GaN装置的关闭和打开时间非常短(在纳秒范围内),所以它们可以以更高的切换频率来切换。这是为何还可以大幅降低切换损耗并因此大幅提高转换效率的原因。切换损耗确切地在装置从打开(ON)状态至关闭(OFF)状态和从关闭状态到打开状态的过渡期间发生。如果该过渡将花费较长时间,则切换损耗将较大。GaN装置使切换损耗最小化。

由高速切换造成的挑战中的一个是:由于从打开状态至关闭状态的短过渡时间而产生的高dI/dt使得硬件的机械封装非常困难。装置包装中(即,印刷电路板中)的所有寄生电感生成可能损坏GaN装置的非常高的电压尖脉冲。这是因为V=L*dI/dt。因此,在高dI/dt的情况下,在装置从打开至关闭的过渡期间生成高压尖脉冲。为了克服这一点,印刷电路板应被设计为使寄生电感最小化。电感与迹线的长度成比例。因此,为了使电感最小化,应使迹线的长度最小化(即,更靠近装置来放置栅极驱动器,更靠近装置来放置变压器等)。设计能够适应非常密集的包装中的每件事物以使电感最小化的PCB布局具有挑战性。

这里所公开电路的另一个独特方面是,所产生的充电器是通用的(即,能够对高压电池和低压电池这两者充电)。这指示用于DC至DC转换器的可重配置电路拓扑。拓扑可以重配置,且在降压转换器拓扑与谐振转换器拓扑之间切换。开关K1和K2有助于这一点。重配置可手动进行,或者它在感测电池的输出电压或在管脚编程时自动进行。

软件和控制方案被设计为实施用于GaN装置的高频切换。凭借高频,必须更快地做每件事。控制信号的模数和数模转换、计算以及处理在数字信号处理器(DSP)中执行。可以用现成的DSP硬件(诸如双核DSP处理器)来进行。同样,必须非常密切注意控制节点的效率(即,高效地写节点),使得其在读取传感器与向栅极驱动器输出控制信号之间的一个周期期间快速执行。

软件的另一个方面涉及充电器的“可重配置性”。现在,为了根据管脚编程或所感测的电池电压电平来重配置开关K1和K2,软件需要更复杂。另一个方面是,软件应能够根据充电器的输入电压电平(该电平可以为115V或230V)来调节PFC控制。

这里所公开充电系统的另一个方面是,DC至DC转换器可以以谐振转换器模式或降压转换器模式二者之一来操作。电路的通用性质将允许用于开发用于各下一新飞机的具体充电器硬件的成本降低。相反,可以再用一个通用充电器零件,而不管电池或操作电压电平如何。

虽然已经参照具体实施方式描述了通用电池充电器,但本领域技术人员将理解,可以在不偏离本文所陈述的权利要求的范围的情况下进行各种变更,并且可以对于其元件替代等同物。另外,可以在不偏离权利要求范围的情况下进行许多修改,以使这里的示教适于特定情形。

注意,以下段落描述了本公开的另外方面:

A1、一种DC至DC转换器,所述DC至DC转换器包括:

第一对输出端子;

第一输入端子和第二输入端子;

第一开关,该第一开关连接到第一对输出端子中的一个;

多个电源开关,所述多个电源开关跨第一输入端和第二输入端子串联连接;

第一接头,该第一接头由各电导体连接至串联连接的电源开关中的至少一个,连接到第二输入端子,并且连接到第一对输出端子中的一个;

第二接头,该第二节头沿着连接电源开关中的两个的电导体布置;

串联件,该串联件联接第一接头和第二接头,串联件包括电感器、变压器的初级绕组和第一电容器;

第三接头,该第三接头由各电导体连接至第一电容器、第一开关以及变压器的初级绕组;以及

第二电容器,该第二电容器将第一对输出端子中的第一输出端子联接至第一对输出端子中的第二输出端子,

其中,第一开关布置在第三接头与第一对输出端子中的第二输出端子之间,并且DC至DC转换器被配置为在第一开关闭合时在降压转换器模式夏操作。

A2、根据段落A1中所述的DC至DC转换器,其中,电源开关是氮化镓基晶体管。

A3、根据段落A1中所述的DC至DC转换器,所述DC至DC转换器还包括:

第二对输出端子;

第四接头;

第二开关,该第二开关布置在第四接头与第二对输出端子中的第一输出端子之间;

串联连接的变压器的第一次级绕组和第二次级绕组;

第一晶体管,该第一晶体管布置在第一次级绕组与第四接头之间;以及

第二晶体管,该第二晶体管布置在第二次级绕组与第四接头之间,

其中,DC至DC转换器被配置为在第一开关断开且第二开关闭合时以谐振转换器模式操作。

A4、根据段落A3中所述的DC至DC转换器,其中,第二对输出端子中的第二输出端子连接到第一次级绕组与第二次级绕组之间的中点。

A5、根据段落A4所述的DC至DC转换器,其中,所述DC至DC转换器还包括:

第五接头,该第五接头布置在第二开关与第二对输出端子中的第一输出端子之间;

第六接头,该第六接头布置在第二对输出端子中的第二输出端子、与第一次级绕组和第二次级绕组之间的中点之间;以及

第三电容器,该第三电容器将第五接头联接到第六接头。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号