首页> 中国专利> 一种新型基于还原氧化石墨烯‑二硫化钨复合材料氨气气体传感器及其制备工艺

一种新型基于还原氧化石墨烯‑二硫化钨复合材料氨气气体传感器及其制备工艺

摘要

本发明提供了一种新型基于还原氧化石墨烯‑二硫化钨复合材料氨气气体传感器及其制备工艺,属于传感器技术领域。本发明包括气敏复合材料以及传感器基板,复合气敏材料是利用一步水热合成获得的纳米材料,所述的气敏材料均匀涂覆与传感器基板的金叉指电极上,传感器基板背面加热板的瞬间加热温度是140℃,加热恢复时间是随检测气体浓度线性变化。本发明的还原氧化石墨烯‐二硫化钨复合材料在室温环境中对氨气表现出良好的响应性能,具有良好的选择性、稳定性以及可重复性等。此发明中的气体传感器恢复阶段,使用瞬态加热在有效缩短还原所需时间的同时,不会对气体敏感材料的性能产生影响,具体瞬态加热时间可以根据探测获得的气体浓度进行设定。

著录项

  • 公开/公告号CN107219270A

    专利类型发明专利

  • 公开/公告日2017-09-29

    原文格式PDF

  • 申请/专利权人 大连理工大学;

    申请/专利号CN201710403446.2

  • 申请日2017-06-01

  • 分类号G01N27/12(20060101);

  • 代理机构21200 大连理工大学专利中心;

  • 代理人温福雪;梅洪玉

  • 地址 116024 辽宁省大连市甘井子区凌工路2号

  • 入库时间 2023-06-19 03:27:25

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-01-17

    授权

    授权

  • 2017-10-31

    实质审查的生效 IPC(主分类):G01N27/12 申请日:20170601

    实质审查的生效

  • 2017-09-29

    公开

    公开

说明书

技术领域

本发明涉及电子元器件技术领域,特别涉及一种新型基于还原氧化石墨烯- 二硫化钨复合材料氨气气体传感器及其制备工艺。

背景技术

随着工业的飞速发展,环境污染问题日益显著,其中空气的污染和检测成为了越来越多人关注的一项重要课题。传统的用于工业检测等的金属氧化物气体传感器具有成本高、体积大、工作温度高等缺点,很难推广应用于普通群众的日常生活。而市场现有的小型气体检测装置又存在稳定性差,响应低等问题。因而,当今气体传感器的发展目标应当是小型化、微型化、常温检测、信号稳定、成本低廉。

石墨烯材料是21世纪新型的二维结构纳米材料,在经过十几年的发展之后,石墨烯基材料在气体传感器领域的应用已经有了广泛报道。然而,无论是纯石墨烯亦或是石墨烯复合材料,对NO2以及氨气的检测一直是国内外的研究重点。这是由于石墨烯特殊的二维结构对氮氧化物以及氨气表现出了非常良好的响应性能和选择性。但至目前为止,石墨烯基材料对氮氧化物和氨气的恢复效果不尽如人意。

二硫化物具有与石墨烯类似的片层状结构,其中二硫化钨是较规则的六边形片状晶体,它具备了良好的导电性和较大的比表面积,同时也对氨气表现出了良好的气敏响应性能。但是,目前为止对二硫化钨的气敏响应研究较少,并且在常温测试中表现出响应较低、信号不稳定、气敏测试没有平台期等缺陷。

因此,如何发挥石墨烯基材料的优势,制备出选择性好、响应高、反应迅速的常温气体传感器是目前亟待解决的重要议题。

发明内容

本发明的目的在于克服现有技术的不足,提供一种选择性好、灵敏度高、稳定性好的基于还原氧化石墨烯-二硫化钨复合材料氨气气体传感器及其制备工艺。

本发明的技术方案:

一种新型基于还原氧化石墨烯-二硫化钨复合材料氨气气体传感器,

所述的新型基于还原氧化石墨烯-二硫化钨复合材料氨气气体传感器组成结构包括负载有还原氧化石墨烯-二硫化钨复合材料的叉指电极、基板和加热板;其中,所述的还原氧化石墨烯-二硫化钨复合材料为片层状气体敏感材料,包括氧化石墨烯和二硫化钨两种组分,氧化石墨烯质量在还原氧化石墨烯-二硫化钨复合材料总质量中不超过10wt%,其余成分为二硫化钨。

所述的氧化石墨烯质量在还原氧化石墨烯-二硫化钨复合材料总质量中不超过3wt%。

所述的新型基于还原氧化石墨烯-二硫化钨复合材料氨气气体传感器组成结构从上到下依次为负载有还原氧化石墨烯-二硫化钨复合材料的叉指电极、基板和加热板。

所述的还原氧化石墨烯-二硫化钨复合材料采用一步加热法制备得到。

一种新型基于还原氧化石墨烯-二硫化钨复合材料氨气气体传感器的制备工艺,步骤如下:

步骤一:配制氧化石墨烯水溶液和二硫化钨水溶液,超声分散;其中,石墨烯和二硫化钨的浓度分别为0.5‐2mg/mL、10‐20mg/mL;

步骤二:将步骤一获得的石墨烯水溶液和二硫化钨水溶液混合,水浴50℃温度下搅拌1小时;

步骤三:将步骤二混合均匀的液体置于高压反应釜中180℃温度下反应16小时;

步骤四:降至室温之后利用去离子水洗净,在60℃温度条件下烘干,得到还原氧化石墨烯-二硫化钨复合材料粉末;

步骤五:将还原氧化石墨烯-二硫化钨复合材料粉末溶解于乙醇中,涂抹于叉指电极表面,厚度为0.01‐0.5mm,在60℃温度条件下烘干,即得新型基于还原氧化石墨烯-二硫化钨复合材料氨气气体传感器。

步骤一中的超声的功率为250W,超声时间为2小时。

一种新型基于还原氧化石墨烯-二硫化钨复合材料氨气气体传感器的测试方法,步骤如下:

步骤一:气体测试腔室内逐步通入氨气浓度低于500ppm的待测气体;

步骤二:万用表测量得到负载有还原氧化石墨烯‐二硫化钨复合材料的叉指电极的电阻值,并传输到计算机,计算机分析电阻值相对变化量;

步骤三:新型基于还原氧化石墨烯-二硫化钨复合材料氨气气体传感器置于清洁空气中,计算机根据氨气浓度控制加热板加热促进恢复时间。

步骤三中对加热板供电电压为12V,供电时间为线性增加,在氨气浓度为 10ppm时加热时间为5‐7s,在氨气浓度为20ppm时加热时间为8‐10s,在氨气浓度为30ppm时加热时间为11‐13s,以此类推。

传感器基板是由瞬态加热版贴合到气体感应模块的陶瓷基板背面进行,加热瞬态加热板受到感应控制系统反馈获得信号的控制,在对一定浓度的氨气响应信号进行处理分析得到相对变化浓度之后,感应控制系统会对瞬态加热板的加热时间做出调整以对恢复传感器初始状态过程做出更有效的促进效果,瞬态加热板的加热时间长短随着氨气浓度变化而呈现线性变化,例如在对10ppm氨气响应之后,瞬态加热板的加热时间为6s,对20ppm氨气响应之后,加热时间为8.5s,对30ppm氨气响应之后,加热时间为11s,以此类推。线性分析获得的加热时长近似到小数点后一位,感应控制系统中的计算机可以通过精确的控制给加热板供电的稳压源而获得准确的加温时间。

传感器封装部分的特点为在保留进气口、出气口的前提下,在封装之后的气腔内壁涂覆金属盐晶体保证气腔内的湿度保持在30%RH左右,湿度变化范围在±10%RH都可以保证对气体传感器的性能不会造成太大影响。

本发明的有益效果:

本发明包括气敏复合材料以及传感器基板,复合气敏材料是利用一步水热合成获得的的纳米材料(如图1),所述的气敏材料均匀涂覆与传感器基板的金叉指电极上(如图2),传感器基板背面加热板的瞬间加热温度是140℃,加热恢复时间是随检测气体浓度线性变化。本发明的还原氧化石墨烯-二硫化钨复合材料在室温环境中对氨气表现出良好的响应性能,具有良好的选择性、稳定性以及可重复性等。此发明中的气体传感器恢复阶段,使用瞬态加热在有效缩短还原所需时间的同时,不会对气体敏感材料的性能产生影响,具体瞬态加热时间可以根据探测获得的气体浓度进行设定。

此氨气气体传感器的优势是:同现有的氨气传感器相比,本发明一方面提出了新型还原氧化石墨烯-二硫化钨纳米复合材料在室温环境中对氨气具有良好的气敏响应,另一方面,瞬态加热可以使气体传感器尽量少暴露在高温环境中,降低敏感材料的老化程度,提高传感器的稳定性和使用寿命。

附图说明

图1(a)为本发明实施例的纯二硫化钨的扫描电子显微镜示意图。

图1(b)为本发明实施例的还原氧化石墨烯-二硫化钨复合材料扫描电子显微镜示意图。

图2(a)为本发明实施例的纯二硫化钨的EDS元素成分分析图。

图2(b)为本发明实施例的还原氧化石墨烯-二硫化钨复合材料EDS元素成分分析图。

图3(a)和(b)分别为本发明实施例的纯二硫化钨吸收峰图和拉曼光谱测试示意图。

图3(c)和(d)分别为本发明实施例的还原氧化石墨烯-二硫化钨复合材料吸收峰图和拉曼光谱测试示意图。

图4为本发明实施例的一种带有瞬时加热模块的氨气气体传感器结构示意图。

图5为本发明实施例的还原氧化石墨烯-二硫化钨对30ppm氨气响应恢复曲线,在恢复阶段分别采用加瞬态高温和常温条件。

图6为本发明实施例的还原氧化石墨烯-二硫化钨对不同浓度氨气响应值。

具体实施方式

以下结合附图和技术方案,进一步说明本发明的具体实施方式。

实施例1

本实施提供的一种新型基于还原氧化石墨烯-二硫化钨复合材料氨气气体传感器及其制备工艺,包括气敏复合材料以及传感器基板。其中复合材料还新型原氧化石墨烯-二硫化钨复合材料(如图1、图2、图3),其特点是还原氧化石墨烯-二硫化钨复合材料为新型合成的片层状气体敏感材料,采用一步加热法制备完成,对低浓度氨气具有良好的响应特性,例如对30ppm的氨气,常温 (20℃-30℃)复合材料的气敏响应Rs为50左右。对于传感器基板,其特点是敏感材料涂覆的厚度为0.4-0.5mm,将瞬态加热版贴合到气体感应模块的陶瓷基板背面进行加热,加热温度固定为140℃,加热时间是根据感应控制系统反馈得到的不同氨气浓度而呈线性变化,例如在对10ppm氨气响应之后,瞬态加热板的加热时间为6s,对20ppm氨气响应之后,加热时间为8.5s,对30ppm氨气响应之后,加热时间为11s,以此类推。

其中,还原氧化石墨烯-二硫化钨复合材料的制备过程是:

首先,10mg单层氧化石墨烯在20mL去离子水中以及320mg二硫化钨粉末在30mL 去离子水中充分超声分散;

其次,将第一步获得的两种液体混合到一起后,在水浴搅拌锅中搅拌;

第三:将第二步混合均匀的液体倒入高压反应釜中高温高压处理;

第四:降至室温之后利用去离子水洗净,在干燥箱中60℃烘干。

最后:制备完成后的粉末,溶解于少量乙醇中之后用移液器滴涂与叉指电极上,并涂抹均匀,在干燥箱中60℃下充分烘干。

将制备完成的还原氧化石墨烯-二硫化钨粉末涂覆与传感器金叉指电极表面,并烘干。对30ppm氨气进行气敏响应测试,在恢复过程中分别使用瞬态加热与常温恢复,并对结果进行对比分析(如图5)。

实施例2

本实施例的技术方案与实施例1的区别为是测试气体浓度不同,本实施例仅就不相同的部分进行描述,相同的部分不再赘述。本实施例的测试气体NH3,测试浓度为,10ppm、20ppm、30ppm、40ppm、50ppm。图6为还原氧化石墨烯-二硫化钨复合材料对不同浓度氨气的响应信号Rs大小。

最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号