首页> 中国专利> 用于太阳辐照度定标的低温辐射计及其内部直连式热结构

用于太阳辐照度定标的低温辐射计及其内部直连式热结构

摘要

用于太阳辐照度定标的低温辐射计及其内部直连式热结构,涉及遥感器在轨光辐射测量领域,解决现有辐射计的热结构中低温平台和热沉直接相连,导致热沉的温度的稳定性达不到低温辐射计的测量要求的问题,包括布鲁斯特窗、77K辐冷屏、铝制外壳、辐射计内部热结构和制冷机;辐射计内部热结构结构具体包括:消杂光光阑、吸收腔、热沉、控温热沉以及热链接。实际光辐射测量实验中,控温热沉被附上起温度调节作用的电加热丝,通过控制控温热沉的温度来调节热沉的温度稳定。该结构提高了绝对辐射计的传热效率,降低了测量过程中的时间常数,且控温热沉的增加使热沉的温度稳定在1σ范围内。

著录项

  • 公开/公告号CN106323463A

    专利类型发明专利

  • 公开/公告日2017-01-11

    原文格式PDF

  • 申请/专利号CN201610675500.4

  • 发明设计人 王凯;叶新;唐潇;方伟;

    申请日2016-08-16

  • 分类号G01J1/42;

  • 代理机构长春菁华专利商标代理事务所;

  • 代理人朱红玲

  • 地址 130033 吉林省长春市东南湖大路3888号

  • 入库时间 2023-06-19 01:17:24

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-01-05

    授权

    授权

  • 2017-02-08

    实质审查的生效 IPC(主分类):G01J1/42 申请日:20160816

    实质审查的生效

  • 2017-01-11

    公开

    公开

说明书

技术领域

本发明涉及遥感器在轨光辐射测量领域,具体涉及一种用于太阳辐照度定标的低温辐射计及其内部直连式热结构。

背景技术

目前,地球上的能源除了地热、核能、火山爆发等之外都直接或间接地来自太阳辐射。太阳辐射的微小变化也将导致全球范围能量循环过程的变动,引起地球环境和气候的变化。因此对太阳辐照度进行长期的稳定监测对整个人类乃至自然界都具有极其重要的作用。当前,随着太阳辐照度学研究的不断深入以及空间光谱遥感的发展,人们对于太阳总辐照度测量数据精度的要求越来越高。从上世纪80年代开始,英国国家物理实验室(NPL)和美国国家标准技术研究所(NIST)等提出发展低温太阳绝对辐射计,从而建立光辐射绝对定标测量的新基准。低温辐射计的测量精度从0.1%~1%提高到0.01%,其中热沉温度的精准控制是制约低温辐射计精度提高的难点所在。

现有的研究一般采用型号为SS304的不锈钢材料连接低温平台和热沉,热沉被附上锗电阻温度传感器和电加热丝,使用锗电阻温度传感器对热沉的温度进行实时采取,通过调节电加热丝的功率施加大小实现对热沉的温度控制。然而,该结构设计使低温平台和热沉直接相连,低温平台接受制冷功率后的温度抖动将直接传递到热沉。即使通过电加热丝对热沉的温度进行及时的调节,热沉的温度的稳定性仍然达不到低温辐射计实验测量的要求。

因此,为满足对地球气候观测的研究需求,提高绝对辐射计在轨测量精度以及测量数据向世界辐射标准溯源。采用新的热结构设计对低温辐射计的热沉温度控制进行优化是现阶段光辐射测量的新思路。

发明内容

本发明为解决现有辐射计的热结构中低温平台和热沉直接相连,导致热沉的温度的稳定性达不到低温辐射计的测量要求的问题,提供一种用于太阳辐照度定标的低温辐射计及其内部直连式热结构。

用于太阳辐照度定标的低温辐射计,包括布鲁斯特窗、77K辐冷屏、铝制外壳、辐射计内部热结构和制冷机;所述铝制外壳用于封装低温辐射计,制冷机用于对辐射计内部热结构制冷;所述77K辐冷屏用于封装辐射计内部热结构,所述辐射计内部热包括:消杂光光阑、吸收腔、热沉、控温热沉和热链接;所述消杂光光阑设置在吸收腔的入口处,吸收腔在光辐射区域埋入了用于电加热的加热丝,所述热沉与控温热沉平行设置,吸收腔与热沉垂直连接,所述吸收腔与热沉之间、热沉与控温热沉之间、控温热沉与低温平台之间设置热链接;所述热沉和控温热沉上附有锗电阻温度传感器以及用于调节温度传感器的电加热丝。

用于太阳辐照度定标的低温辐射计内部直连式热结构,包括消杂光光阑、吸收腔、热沉、控温热沉和热链接;所述消杂光光阑设置在吸收腔的入口处,吸收腔在光辐射区域埋入了用于电加热的加热丝,吸收腔内部涂有镜面反射涂料;所述热沉与控温热沉平行设置,吸收腔与热沉垂直连接,所述吸收腔与热沉之间、热沉与控温热沉之间、控温热沉与低温平台之间设置热链接;所述热沉和控温热沉上附有锗电阻温度传感器以及用于调节温度传感器的电加热丝。

本发明的有益效果:本发明所述的直连式热结构热沉温度控制稳定,低温辐射计连续工作24h后热沉温度的稳定性不小于1σ;低温辐射计制冷效果明显,且为二级制冷。第一级用铝罩封装辐射计的关键部位,液氮制冷使整个辐射计稳定在77K左右。第二级制冷为机械制冷,使辐射计的热结构稳定在20K左右;吸收腔、热沉和控温热沉垂直相连,简化了热量交换的传递通道,提高了传热效率,吸收腔光辐射测量的时间常数稳定在33S左右,满足低温辐射计的实验要求。

附图说明

图1为本发明所述的用于太阳辐照度定标的低温辐射计的结构示意图;

图2为图1中低温辐射计的的内部直连式热结构的放大示意图。

图中:1、消杂光光阑,2、吸收腔,3、热沉,4、控温热沉,5、热链接,6、布鲁斯特窗,7、77K辐冷屏外屏,8、77K辐冷屏内屏,9、铝制外壳,10、制冷机。

具体实施方式

具体实施方式一、结合图1和图2说明本实施方式,用于太阳辐照度定标的低温辐射计,包括布鲁斯特窗6、77K辐冷屏、铝制外壳9、辐射计内部热结构以及制冷机10;所述铝制外壳9用于封装低温辐射计,制冷机10用于对辐射计内部热结构制冷,起到第二级制冷作用;所述辐射计内部热结构包括:消杂光光阑1、吸收腔2、热沉3、控温热沉4以及热链接5;该结构被封装在制冷至77K的低温辐射计辐冷屏内。

所述消杂光光阑1设置在吸收腔2的入口处,吸收腔2在光辐射区域埋入了用于电加热的加热丝,电加热阶段通过电加热丝对锥腔进行加热从而实现与光加热的等效;吸收腔内部涂有镜面反射涂料;所述热沉3与控温热沉4平行设置,吸收腔2与热沉3垂直连接,所述吸收腔2与热沉之间、热沉与控温热沉之间、控温热沉与低温平台之间设置热链接;所述热沉3、控温热沉4上附有锗电阻温度传感器和其调节作用的电加热丝;

本实施方式中所述的77K辐冷屏包括77K辐冷屏外屏7和77K辐冷屏内屏8,77K辐冷屏外屏和77K辐冷屏内屏之间充满液氮,对低温辐射计进行第一级制冷;所述77K辐冷屏外屏和77K辐冷屏内屏的外壁均贴有铝制锡纸以屏蔽辐射换热对热沉3和吸收腔2温度的影响。

本实施方式中所述的直连式热结构中吸收腔、热沉和控温热沉垂直相连,简化了热量交换的传递通道,提高了传热效率。热沉和控温热沉之间,控温热沉与低温平台之间通过SS304号不锈钢材料的热链接相连。在热沉与低温平台之间增加了控温热沉,通过调节控温热沉的温度维持热沉温度的温度。该结构削弱了低温平台温度抖动对热沉温度的影响。控温热沉被附上锗电阻温度传感器和电加热丝,锗电阻温度传感器采集控温热沉的温度,电加热丝通过改变施加功率的大小调节控温热沉的温度。

具体实施方式二、结合图2说明本实施方式,用于太阳辐照度定标的低温辐射计内部直连式热结构,包括消杂光光阑1、吸收腔2、热沉3、控温热沉4和热链接5;所述消杂光光阑1设置在吸收腔2的入口处,吸收腔2在光辐射区域埋入了用于电加热的加热丝,吸收腔2内部涂有镜面反射涂料;

所述热沉3与控温热沉4平行设置,吸收腔2与热沉3垂直连接,所述吸收腔2与热沉之间、热沉与控温热沉之间、控温热沉与低温平台之间设置热链接;所述热沉3和控温热沉4上附有锗电阻温度传感器以及用于调节温度传感器的电加热丝。

本实施方式中所述的吸收腔2内部涂有镜面反射涂料,所述镜面反射涂料的厚度为0.05mm。在电加热阶段,通过电加热丝对所述吸收腔2进行加热,实现电加热与光加热等效。

本实施方式中所述的吸收腔与热沉和控温热沉垂直相连,简化了热量交换的传递通道,提高了传热效率。热沉和控温热沉之间,控温热沉与低温平台之间通过SS304号不锈钢材料的热链接相连。此外,为实现热沉温度的有效控制,在热沉与低温平台之间增加了控温热沉。实际光辐射测量实验中,控温热沉被附上起温度调节作用的电加热丝,通过控制控温热沉的温度来调节热沉的温度稳定。该结构提高了绝对辐射计的传热效率,降低了测量过程中的时间常数,且控温热沉的增加使热沉的温度稳定在1σ范围内。

具体实施方式三、本实施方式为具体实施方式一所述的用于太阳辐照度定标的低温辐射计的测量方法,该测量方法由具体实施过程如下:

首先,进行实验前的准备。在恒温实验室中运用分子泵、前级泵(干泵)相结合的方法对低温辐射计抽真空。测试时真空度小于1×10-5Pa时,气体传导的热流不大于0.25W/m2,抽真空的效果满足实验需求。运用二级制冷的方式对低温辐射计进行制冷,第一级制冷采取液氮制冷的方式将辐冷屏的温度稳定在77K左右,第二级制冷采取制冷机10机械制冷使低温辐射计内部测量结构维持在20K左右。地面测量实验时,入射光一般采用632.8nm绿光和532nm红光作为激光光源,激光光源后放置光源功率稳定器,当功率稳定性维持在万分之五时,满足低温辐射计的实验要求。

其次,进行低温辐射计光辐射测量实验。测量实验分为光加热阶段和电定标阶段。

光加热阶段,打开快门,入射光通过布鲁斯特窗6、消杂光光阑1照射在吸收腔2内。所述布鲁斯特窗6起到隔绝反射的作用,使入射光全部入射至辐射计内,通常为防止吸收腔过快接受辐射功率能量,引起接受腔内温度梯度分布发生明显变化。在打开快门前吸收腔将被施加一个低功率P,吸收腔2接受的光辐射功率加上施加的低功率使得接受腔温度平衡在T。

电定标阶段,关闭快门,在确保相同低功率P施加在吸收腔2的同时,施加额外的电功率使得吸收腔2温度再度平衡在T。此时,额外施加的电功率即为所需测得的光辐射功率。

最后,在光加热和电定标过程中,热沉3上的温度都通过锗电阻温度传感器进行采集。运用PID控制和Labview软件的结合,采取参数自适应的方法,通过控制控温热沉上电加热丝功率输入的大小对热沉的温度进行实时调节。当整个测量过程中,热沉3的温度稳定性在维持在1σ范围内时,该组测量数据被视为有效的低温辐射计光辐射测量数据。

本实施方式中,运用PID控制和Labview软件的结合,采取参数自适应的方法对控温热沉的温度进行调节。所运用的PID控制的参数设置,通常P被设置为热链接的热传导率,I被设置为时间常数,D采用参数自适应的方法进行测试而筛选得出。

采用本实施方式的测量方法对太阳辐照度进行更精确的测量,中国科学院长春光学精密机械与物理研究所提出了一种反射太阳光谱区(0.2-2.5μm)的空间遥感绝对辐射定标基准辐射计(Absolute Radiance Calibration Primary Radiometer),简称为ARCPR,ARCPR即为运行在20K温度下的低温辐射计。ARCPR吸收腔为圆锥型腔,半径为3.5mm,高度为13mm,圆心角为30°,吸收腔的内表面涂着黑漆,对太阳光的吸收率接近于1。热沉3呈圆柱状,中间中空,内径为14.8mm,外径为19mm,长度为34mm。吸收腔、热沉、制冷机底座的结构主要由无氧高导铜(OFHC铜)组成,能显著提高辐射能量在腔体组件内的传递效率。为提高ARCPR的热沉温度稳定性,采取了本发明的直连式热结构设计,在实际的低温辐射计实验测量过程中,热沉的温度响应为24.50005±0.00019K,满足低温辐射计的精度要求。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号