首页> 中国专利> 用于执行动力总成系统中发动机自动启动的方法和设备

用于执行动力总成系统中发动机自动启动的方法和设备

摘要

描述了一种动力总成系统,其包括配置为响应于驾驶员扭矩请求而生成推进扭矩的内燃发动机和电机。用于操作动力总成系统的方法包括,响应于执行发动机自动启动操作的请求而确定是否可能发生传动系扭矩下降。所述方法还包括当确定在发动机自动启动操作的执行期间将发生传动系扭矩下降时放弃执行发动机自动启动操作。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-03-15

    授权

    授权

  • 2016-11-30

    实质审查的生效 IPC(主分类):B60W10/06 申请日:20160422

    实质审查的生效

  • 2016-11-02

    公开

    公开

说明书

技术领域

本公开涉及使用多个扭矩生成装置的动力总成系统和与其相关联的动态系统控制。

背景技术

混合动力总成系统从两个或更多能量源生成推进扭矩,例如通过内燃发动机的碳基燃料、以及通过一个或多个电机的电功率,其中推进扭矩被通过扭矩传动装置传递至联接至传动系的输出构件。这样的动力总成系统可以使用电量消耗模式或电量保持模式或二者,其中这样的策略指的是管理用于电机的能量储存系统的电量状态(SOC)。在电量消耗模式中,动力总成控制系统控制动力总成操作,使得在车辆出行或钥匙打开循环(key-on cycle)期间能量储存系统的SOC实现最小状态,并且基于此管理来自内燃发动机的扭矩和来自电机(一个或多个)的扭矩。在电量保持模式中,动力总成控制系统控制动力总成操作,使得能量储存系统的SOC在车辆出行的结束处处于与车辆出行的开始处相同的水平,并且基于此管理来自内燃发动机的扭矩和来自电机(一个或多个)的扭矩。

用于操作混合动力总成系统的控制系统控制发动机和电机(一个或多个)的扭矩输出,并且响应于操作员命令的输出扭矩请求而应用变速器中的扭矩传递元件以传递扭矩(将燃料经济性、排放、驾驶性能和其他因素考虑在内)。控制系统监视来自车辆和操作员的各种输入,并且提供混合动力总成的可操作的控制,包括控制变速器操作模式和换挡、控制来自发动机和电机(一个或多个)的扭矩输出、并且调节在电能储存装置和电机之间相互交换的电功率以管理变速器的输出,包括扭矩和转速。

发明内容

所描述的是一种动力总成系统,其包括配置为响应于驾驶员扭矩请求而产生推进扭矩的电机和内燃发动机。用于操作动力总成系统的方法包括,响 应于执行发动机自动启动操作的请求而确定是否可能发生传动系扭矩下降。所述方法还包括,当确定在发动机自动启动操作的执行期间将发生传动系扭矩下降时,放弃执行发动机自动启动操作。

通过用于实施在所附权利要求中限定的本教导的一些最佳模式和其它实施例的以下详细描述,连同附图,本教导的上述特征和优势及其他特征和优势将显而易见。

附图说明

现在将通过示例、参考附图来描述一个或多个实施例,其中:

图1示意性地例示了动力总成系统,其包括内燃发动机和联接至传动系的多模式变速器,根据本公开,其操作由混合控制模块控制;

图2示意性地例示了根据本公开、用于发动机自动启动例程的流程图,所述发动机自动启动例程可被周期性地执行,以控制参考图1描述的动力总成系统的实施例的操作;和

图3图形地例示了根据本公开、参考图1描述的动力总成系统的实施例的操作,其采用了参考图2描述的发动机自动启动控制例程的实施例。

具体实施方式

现在参考附图,其中附图仅是为了例示某些示例性实施例的目的,而不是为了限制这些示例性实施例的目的,图1示意性地例示了用于车辆的混合动力总成系统10的元件,分别包括内燃发动机(发动机)12及第一和第二电机20、22,其机械地联接至多模式变速器(变速器)14以在其间传递扭矩。变速器14的输出构件26机械地联接至传动系90,所述传动系90可包括增速器(multipliers)、差速器(differentials)、驱动桥(transaxles)和/或其他扭矩传递元件。混合动力总成系统10产生输出扭矩,传动系90将所述扭矩以推进扭矩的形式传递至车轮。输出扭矩和推进扭矩可以是用于车辆加速的正扭矩或用于车辆减速(即,用于制动)的负扭矩。由发动机12生成的功率来自于以碳氢燃料形式储存的能量,且可以提供扭矩用于车辆推进和/或提供输入功率至在电功率生成(充电)模式中操作的第一和第二电机20、22中的一个或二者。由第一和第二电机20、22生成的功率来自于发动机12、或来自于储存在高电压能量储存装置(电池)13中的电能。在一个实施例中, 电池13可经由充电器18联接至离车电源,以在车辆停车的时段期间实现电池13的充电。这样的系统可被称为插电式混合动力车辆。

发动机12以及第一和第二电机20、22可以根据最大输出功率能力描述,其中输出功率形式为机械扭矩或电功率。第一和第二电机20、22中的一个或二者可被用于生成扭矩用于车辆推进。在一个实施例中,第一电机20主要作用为生成电功率,并且第二电机22主要作用为生成扭矩用于车辆推进。在一个实施例中,第二电机22可被配置有大于发动机12最大输出功率的最大输出功率。在这样的实施例中,第二电机22作为用于给车辆推进提供扭矩的主要原动机操作,而发动机12起到通过第一电机20提供扭矩用于生成电功率和/或提供扭矩用于车辆推进的补充角色的作用。

动力总成系统10的各种元件的操作通过混合控制模块(HCP)5被动态地控制。动力总成系统10是一个实施例的例示,本文描述的概念可被使用在所述实施例上。应理解,本文描述的概念可被使用在包括内燃发动机(所述内燃发动机机械地联接至至少一个电机以生成用于车辆推进的扭矩和用于储存在能量储存装置上的电功率)的混合动力总成的任何实施例上。

发动机12包括旋转曲轴11,其可旋转地联接至变速器14的输入构件16。旋转曲轴11联接至变速器14的输入构件16,使得曲轴11的旋转导致输入构件16的相应旋转。曲轴11可通过介于中间的离合器、扭矩转换装置或能够将发动机曲轴11的旋转从变速器14的输入构件16的相应旋转脱离的其他装置而联接至输入构件16。发动机12被配置用于在车辆的钥匙打开(key-on)操作期间的自动停止和自动启动操作。自动停止操作包括在钥匙打开操作期间命令发动机12到关闭状态,同时用于车辆推进的全部扭矩经由第一和第二电机20、22中的一个或二者响应于驾驶员扭矩请求提供。当处于关闭状态时,发动机12不被供给燃料且不转动。自动启动操作包括在钥匙打开操作期间命令发动机到打开状态。在一个实施例中,当发动机12处于打开状态时,用于车辆推进的扭矩可响应于驾驶员扭矩请求、经由发动机以及第一和第二电机20、22中的一个或二者而被提供。替代地,当发动机12处于打开状态,用于车辆推进的扭矩可响应于驾驶员扭矩请求经由第一和第二电机20、22中的一个被提供,且发动机12可提供扭矩至第一和第二电机20、22中的另一个,以生成电功率用于储存在电池13中,并且通过第一和第二电机20、22中的所述一个(其被配置为生成扭矩用于车辆推进) 生成扭矩用于车辆推进。

变速器14分别包括第一和第二行星齿轮组40、50,其分别具有可旋转地联接至第一和第二电机20、22的元件。行星齿轮组40包括恒星齿轮42、托架构件44和环形齿轮48。托架构件44可旋转地支撑与恒星齿轮42啮合的多个小齿轮46,且环形齿轮48与小齿轮46啮合。行星齿轮组50包括恒星齿轮52、可旋转地支撑多个小齿轮56(与恒星齿轮52啮合)的托架构件54、以及与小齿轮56啮合的环形齿轮58。转子毂35通过中间套轴64与恒星齿轮52一致旋转。在一个实施例中且如本文所描述的,变速器14是电-机械变速器装置,其中第一和第二电机20、22是电动的马达/发电机。应理解,本文所描述的概念不限于仅使用第一和第二简单行星齿轮组的变速器,而是还可有利地应用于使用任意多个简单或复杂行星齿轮组或其他齿轮传动配置的变速器。

第一电机20和第二电机22封装在箱体壳体/接地24内,且可旋转地联接在输入构件16与变速器输出构件26(联接至传动系90)之间。第一电机20包括接地至变速器箱体24的环形定子30和被支撑在可旋转转子毂34上的环形转子32。第二电机22包括接地至变速器箱体24的环形定子31和被支撑在可旋转转子毂35上的环形转子33。

电池13供应电功率至功率逆变器17,其经由传输导体41与第一定子30电连接以控制其操作。电池13可以是任何高电压电能储存装置,包括那些使用锂离子电池的或其他合适的电化学装置。电池13的功率输出可以以电压、电流和电量状态(SOC)为特征。SOC例如以A-h单位或其他合适单位提供了电池13上储存的电能的指示,且可以通过任何合适的方法(诸如电流积分)确定。电池13优选地以最小SOC和最大SOC为特征。导致电池13超过最大SOC或降低到最小SOC以下的操作可导致电池13中的物理和化学改变,其可缩短电池的服务寿命,且因此是不期望的。

功率逆变器17还经由传递导体43与第二定子31电连接,以控制第二电机22的操作来控制操作。第一和第二电机20、22可操作为马达或发电机。第一和第二电机20、22中的任一个可操作为电马达,由电池13提供的所储存电功率在其中通过功率逆变器17转换并且被提供至各定子30、31以生成扭矩。第一和第二电机20、22中的任一个可操作为发电机,车辆动量可在其中转换至储存在电池13中的电功率或被第二电机22使用。

变速器14进一步包括第一离合器51和第二离合器53。第一离合器51是接地离合器或制动器,其被可选择地激活以将环形齿轮构件58接地至变速器箱体24。输入构件16从轴60轴向隔开且不与轴60同心,所述轴60联接第一行星齿轮组40的托架构件44和第二行星齿轮组50的托架构件54。轴72优选地与输入构件16同轴,所述轴72联接至转子构件70以与输入构件16联接用于与环形齿轮48共同旋转。轴62经由毂构件37和轴向延伸部分39将转子毂34与恒星齿轮42联接。第二离合器53嵌在轴向延伸部分39、毂37与轴62之间。毂构件77与第二离合器53联接。与轴62同心的分开的套轴60将托架构件54以及毂构件68和69联接至托架构件44,且因此将托架构件44的旋转固定地联接至托架构件54的旋转。套轴64将转子毂35与恒星齿轮52联接。轴向延伸构件78、毂77和轴向延伸构件79(其为环形轴)将第二离合器53与第一离合器51和环形齿轮58联接。轴向延伸构件78还包围行星齿轮组50。当第二离合器53被失效时,环形齿轮构件58从恒星齿轮构件42脱离。

变速器14可选择地以固定齿轮模式和可变模式操作,其中可变模式在一个实施例中为电可变模式。固定齿轮模式的变速器操作可包括其中输出构件26的旋转速度是输入构件16的旋转速度的直接比例的任何操作。通过激活第一和第二离合器51、53二者,变速器14以第一齿轮比操作在第一固定齿轮模式中。通过激活第一离合器51并结合在如本文所描述的条件下处于关闭状态的发动机12,变速器14以第二齿轮比操作在发动机关闭固定齿轮模式中。第一齿轮比和第二齿轮比可基于第一和第二行星齿轮组40、50的齿轮比确定。可变模式的变速器操作包括其中输出构件26的旋转速度基于输入构件16的速度结合第一和第二电机20、22的转速、行星齿轮组40、50的齿轮比、第一和第二离合器51、53的激活状态和其他因素确定的任何操作条件。

HCP 5与发动机控制模块(ECM)23、逆变器控制器15、和变速器控制模块(TCM)21、以及其他装置通信。HCP 5提供对ECM 23、TCM 21、逆变器控制器15和接收来自车辆操作员的命令的操作员界面装置6上的管理控制。HCP 5协调发动机12及第一和第二电机20之间的扭矩命令,以响应于驾驶员扭矩请求(其是到操作员界面装置6的输入)控制输出扭矩。操作员界面装置6包括一个或多个装置,操作员通过所述一个或多个装置命令 车辆和动力总成系统的操作,包括,例如,加速踏板、制动踏板、点火钥匙、变速器范围选择器、电量模式选择器和其他相关装置。操作员界面装置6生成用于操作车辆的命令,包括,例如,车辆的钥匙打开/钥匙关闭状态、变速器范围选择(例如,停车、倒挡、空挡和驱动挡中的一个)、驾驶员扭矩请求、选择的电量模式和其他相关的命令。动力总成系统10生成输出扭矩,响应于驾驶员扭矩请求和到操作员界面装置6的其他输入,所述输出扭矩被作为推进扭矩通过传动系90传送至车轮。为了例示方便,操作员界面装置6被示出为单一装置。

功率逆变器模块17优选地包括一对功率逆变器和各马达控制模块,其配置为接收扭矩命令并因此控制逆变器状态,用于提供马达驱动或电功率再生功能,以满足马达扭矩命令。功率逆变器包括互补三相电力电子装置,且每一个包括多个绝缘栅双极型晶体管(IGBT)或其他合适的功率开关装置用于将来自电池13的DC功率转换至AC功率,以用于通过在高频切换而为第一和第二电机20、22中的相应一个提供功率。IGBT形成配置为接收控制命令的开关模式电源。三相电机中每一个的每一相包括一对IGBT。IGBT的状态被控制以提供马达驱动机械功率生成或电功率再生功能。三相逆变器经由DC传输导体接收或供应DC电功率,并且将其变换至三相AC功率或从三相AC功率变换,所述三相AC功率经由传输导体传导至第一和第二电机20、22或从第一和第二电机20、22传导,以使得第一和第二电机20、22作为马达或发电机操作。响应于马达扭矩命令,逆变器控制器15控制功率逆变器模块17以将电功率传输至第一和第二电机20、22以及从第一和第二电机20、22传输。电流被横跨高电压电气总线传输至电池13以及从电池13传输以对电池13充电和放电。

ECM 23有效地连接至发动机12,并且功能为从传感器获取数据并且在多个分立的线或其他合适的通信链路上发送促动器命令至发动机12。ECM23监视发动机速度和负载,所述发动机速度和负载被通信至HCP 5。逆变器控制器15监视和控制第一电机20的第一马达扭矩和第二电机22的第二马达扭矩。替代地,两个电子控制器可以被利用,每个控制器分别监视第一和第二电机20、22中的相应一个。TCM 21监视转速并控制第一和第二离合51、53的激活和失效。不与本公开直接相关的传感器、促动器和控制例程不详细说明或描述。

术语控制器、控制模块、模块、控制、控制单元、处理器和类似的术语指专用集成电路(ASIC)、电子电路、中央处理单元(例如,微处理器)和形式为存储器和储存装置(只读、可编程只读、随机访问、硬盘驱动器、等)的相关非瞬时性存储器部件中的任何一个或各种组合。非瞬时性存储器部件能够以以下形式储存机器可读指令:一个或多个软件或固件程序或例程、组合逻辑电路(一个或多个)、输入/输出电路(一个或多个)和装置、信号调节和缓冲电路以及能够被一个或多个处理器访问以提供描述的功能的其他部件。输入/输出电路(一个或多个)和装置包括模/数转换器和监视来自传感器的相关装置,其中这样的输入以预设采样频率或响应于触发事件被监视。软件、固件、程序、指令、控制例程、代码、算法和类似术语意思是,包括校准和查找表的任何控制器可执行指令集。每个控制器执行控制例程(一个或多个)以提供所期望的功能,包括监视来自感测装置和其他网络控制器的输入并且执行控制和诊断例程以控制促动器的操作。例程可以以定时的间隔被执行,例如在正在进行的操作期间每100毫秒或3.125、6.25、12.5、25和100毫秒。替代地,例程可响应于触发事件的发生而被执行。控制器之间的通信,以及控制器、促动器和/或传感器之间的通信可使用直接接线链接、网络通信总线链接、无线链接或任何另一合适的通信链接实现。通信包括以任何合适形式交换数据信号,包括,例如,经由导电介质交换电信号、经由空气交换电磁信号、经由光波导交换光信号等。如本文所使用的,术语“动态”和“动态地”描述被实时执行,并且特征为在例程的执行期间或在例程执行的迭代之间监视或者确定参数的状态且定时地或周期地更新参数的状态的步骤或过程。

图2示意性地示出了用于发动机自动启动控制例程200的流程图,所述发动机自动启动控制例程200可以作为在HCP 5和其他控制器中执行的一个或多个例程被周期地执行以控制上文参考图1描述的动力总成系统10的实施例的操作。动力总成系统10在通过传动系90响应于操作员对功率的请求(在本文中也称为驾驶员扭矩请求)提供推进扭矩至车轮用于示例性车辆的背景下被描述。发动机自动启动控制例程200被执行以控制动力总成系统10的操作,所述动力总成系统10生成被传送至传动系90用于推进扭矩作用的输出扭矩。如此,动力总成系统10的输出扭矩通过传动系90与推进扭矩相关。发动机自动启动控制例程200包括确定在响应于执行发动机自动启动操 作的请求的发动机自动启动操作的执行期间是否可发生传动系扭矩下降,并且当其确定如果发动机自动启动操作被执行则传动系扭矩下降可能发生时放弃执行发动机自动启动操作。发动机自动启动操作例程200优选地在车辆操作期间周期地执行,例如,每12.5毫秒一次。作为关键,提供表1,其中数字标记的模块和相应功能被如下阐述,对应于发动机自动启动控制例程200。

表1

在车辆操作期间,动力总成系统10可以被操作,同时发动机12处于关闭状态,诸如在电量消耗模式中的操作期间(210)。在可包括当电池SOC降低至第一最小SOC阈值时的条件下,动力总成系统10可请求发动机12转变至打开状态(212)。

在执行自动启动操作之前,发动机自动启动控制例程200确定传动系扭矩下降或另一不期望的驾驶性能条件在自动启动操作期间是否可能发生(214)。这优选地包括确定驾驶员扭矩请求、电机的最大扭矩能力及发动机启动扭矩。传动系扭矩下降是到车辆传动系90的推进扭矩意外地降低的状况,即在没有驾驶员扭矩请求的相应降低的情况下降低。因此,可基于比较发动机启动扭矩与电机的最大扭矩能力和驾驶员扭矩请求之间的差来确定传动系扭矩下降在发动机自动启动操作的执行期间是否会发生。在自动启动操作期间可能发生传动系扭矩下降的一个车辆操作条件包括动力总成系统10以电量消耗模式操作,其中驾驶员扭矩请求处于需要电机的最大扭矩能力的很大一部分的量级,所述电机正在生成用于车辆推进的扭矩。例如,当第二电机22的最大扭矩能力小于驾驶员扭矩请求和发动机启动扭矩的组合时 (考虑到传动系90的扭矩传递元件和变速器14的选择范围),传动系扭矩下降可能发生。换句话说,当发动机启动扭矩大于电机的最大扭矩能力与驾驶员扭矩请求的差时,传动系扭矩下降在发动机自动启动操作的执行期间可能发生。发动机启动扭矩是转动处于不供给燃料条件的发动机12以达到发动机启动所期望的速度所必需的扭矩量。如此,当电池SOC降低至小于第一最小SOC阈值时,发动机自动启动控制例程200可延迟自动启动操作的执行,以避免可因此导致的传动系扭矩下降。

当动力总成操作的状况指示传动系扭矩下降不可能发生,即,当第二电机22的最大扭矩能力充分大于驾驶员扭矩请求和发动机启动扭矩的组合时(214)(0),发动机自动启动操作被无延迟地执行(220)。因此,发动机自动启动操作可响应于驾驶员松油门(tip-out)事件被无延迟地执行,例如,当驾驶员扭矩请求改变且因此不再需要正在生成扭矩用于车辆推进的电机的最大扭矩能力的很大一部分时。

当动力总成操作的状况指示传动系扭矩下降可发生,即,当第二电机22的最大扭矩能力小于或等于驾驶员扭矩请求和发动机启动扭矩的组合时(214)(1),发动机自动启动控制例程200评估是否已经有从电量消耗模式到电量保持模式的转变(215)。当没有从电量消耗模式到电量保持模式的转变时(215)(0),发动机自动启动操作被无延迟地执行(220)。当已有从电量消耗模式到电量保持模式的转变时(215)(1),发动机自动启动控制例程200评估是否有强迫发动机自动启动操作执行而不管传动系扭矩下降的可能性的代替条件(216)。当电池SOC降低至小于第一最小SOC阈值时,发动机自动启动控制例程200可延迟自动启动操作的执行,以避免在这样的评估期间的传动系扭矩下降。可强迫执行发动机自动启动操作的一个代替条件包括,当电池SOC降低至小于第一最小阈值的第二最小SOC阈值时执行发动机自动启动操作,以避免某些操作状况,例如,可导致降低电池寿命的低电池SOC。可强迫执行发动机自动启动操作的另一个代替条件包括,当差值SOC状态落到优选范围之外时执行发动机自动启动操作。差值SOC状态指从目标SOC状态变化的大小,优选地以SOC(%)表示。在一个实施例中,差值SOC状态可在电池管理中使用以随同目标SOC一起控制SOC。例如,目标SOC可以是处于20%SOC,同时差值SOC为±5%。因此,当实际SOC小于目标SOC结合差值SOC时,发动机自动启动操作可以被执行而不管传 动系扭矩下降的可能性。可强迫执行发动机自动启动操作的另一个代替条件包括,当在发动机12处于关闭状态的情况下操作由于硬件错误或另一限制而不在可用时,执行发动机自动启动操作。可强迫执行发动机自动启动操作的另一个代替条件包括,当发动机打开请求已活动大于阈值的一段时间时执行发动机自动启动操作。如果在评估期间发动机关闭状态被请求,则发动机打开请求和相关的自动启动操作的执行可被取消。当满足强迫执行自动启动操作的代替条件中的任一个时(216)(1),发动机自动启动操作被无延迟地执行(220)。

当不满足任何强迫执行自动启动操作的代替条件时(216)(0),发动机自动启动控制例程200结束,因此在当前迭代期间放弃执行自动启动操作(218)。这样的操作可响应于高驾驶员扭矩请求而延长发动机关闭状态中的操作或EV模式中的操作,并且减少与发动机自动启动操作相关的不期望的驾驶性能的可能性。

图3使用参考图2描述的发动机自动启动控制例程200的实施例图形地示出了参考图1描述的动力总成系统10的实施例的操作。示图包括关于水平轴线上的时间302的竖直轴线上的参数,所述参数包括驾驶员扭矩请求(%)310、SOC 320、发动机打开请求330和发动机自动启动操作340。标绘的数据包括驾驶员扭矩请求315、SOC 325、发动机打开请求335、和自动启动请求345。

最初,发动机打开请求335和自动启动请求345二者均非活动,指示发动机处于关闭状态,且因此动力总成操作在电量消耗模式中,如通过SOC325中的降低所指示的。驾驶员扭矩请求315初始地大于阈值请求312,其中阈值请求312对应于用于驾驶员扭矩请求的大小,在该大小处电机的最大扭矩能力的很大一部分在生成扭矩用于车辆推进。当驾驶员扭矩请求315大于阈值请求312时,执行自动启动操作可导致传动系扭矩下降。

在时点303处,SOC 325到达第一最小SOC阈值322。第一最小SOC阈值322可以与一SOC水平相关,在该SOC水平处系统请求从电量消耗模式到电量保持模式的转变,且该SOC水平优选地大于最小可允许的SOC水平324。因此,发动机打开请求330转变至活动(1)。然而,因为驾驶员扭矩请求315大于阈值请求312,其指示在自动启动操作期间发生下降的可能性,所以发动机自动启动操作340保持非活动(0)。

操作继续,且在时点305处,驾驶员扭矩请求315降低至阈值请求312。这样的操作使得发动机自动启动执行340能够与保持活动(1)的发动机打开请求330一致地变成活动(1)。因此,发动机自动启动操作340执行,且发动机12提供功率至第一电机20以生成电功率,如通过其后SOC 325中的相应增加可见的。还应指出的是,如果SOC 325已经到达最小可允许的SOC水平324,发动机自动启动执行340可已经被触发。

详细描述和附图或视图支持和描述本教导,但是本教导的范围仅由权利要求限定。尽管已详细描述了用于执行本教导的最佳模式和其他实施例,存在用于实践限定在所附权利要求中的本教导的各种替换设计和实施例。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号