首页> 中国专利> 用于减少焊接期间的气穴形成的系统和方法

用于减少焊接期间的气穴形成的系统和方法

摘要

本发明公开了用于减少焊接期间的气穴形成的系统和方法。本技术公开了一种系统,所述系统用于使用比如超声波能量的能量来接合工件,其中,所述能量集中在焊接区域中的位置处,促进多个导能件的顺序熔化。所述系统可配置为使所述顺序熔化始于所述焊接区域的中心处并且向外扩展。通过使用配置用于减少气穴的焊嘴、逐渐减小多个导能件的高度和/或逐渐减小所述导能件本身,可发生顺序熔化,这些措施均会减小由热能产出的能量转移区域的尺寸。本技术还包括一种方法,所述方法用于使用比如超声波能量的能量来接合工件,所述能量集中在焊接区域中的位置处,使得通过使用上述特征来顺序地焊接多个导能件。

著录项

  • 公开/公告号CN105690738A

    专利类型发明专利

  • 公开/公告日2016-06-22

    原文格式PDF

  • 申请/专利号CN201510912622.6

  • 发明设计人 W.A.罗杰斯;H.G.基亚;

    申请日2015-12-11

  • 分类号B29C65/08;B29C65/24;

  • 代理机构中国专利代理(香港)有限公司;

  • 代理人张小文

  • 地址 美国密执安州

  • 入库时间 2023-12-18 15:41:19

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-11-13

    授权

    授权

  • 2016-07-20

    实质审查的生效 IPC(主分类):B29C65/08 申请日:20151211

    实质审查的生效

  • 2016-06-22

    公开

    公开

说明书

技术领域

本技术大致涉及通过焊接来连接工件。更加具体地,本技术涉及用于避免在焊接接合的复合材料中形成气隙的系统和方法。

背景技术

超声波焊接是一种工业技术,高频超声波声学振动通过这种工业技术被局部地施用至在压力下保持在一起的工件,以便创建固态焊缝。这种技术通常用于塑料,比如用于接合不同的材料。这种技术用在比如汽车、器械、电子、玩具、包装、纺织和医药等工业中。

导能件(energydirector)是材料的凸起部分,该材料模塑、设置、附接或以其他方式接触或定位为邻近在超声波焊接期间使用的工件的表面。导能件集中超声波能量以快速地开始软化和熔化接合界面处的表面。

图1图示了常规超声波焊接工艺,用于将第一工件110和第二工件120结合在一起。如在步骤100中所示,第一工件110定位为与第二工件120接触,第二工件120包括多个导能件130。焊嘴150定位为接近第一工件110的上表面。焊嘴150通常具有斜切的(例如,倒棱的)边缘,斜切的(例如,倒棱的)边缘设计用于与第一工件110的上表面接触。

在步骤106处,焊嘴150与第一工件110的上表面接触,创建能量转移区域160,能量转移区域160最初由位于焊嘴150的斜切的边缘与第一工件110的上表面之间的接触区域形成。由于来自焊嘴150的超声波振动穿过能量转移区域160并且在各个导能件130中生成热量,所以与能量转移区域160直接相邻的各个导能件130开始同时熔化。最终,能量转移区域160可扩张通过第一工件110的某些或全部。此外,能量转移区域160可扩张通过导能件130和/或第二工件120的某些或全部。

图2图示了常规超声波焊接工艺的透视图。具体地,图2图示了随着焊嘴150沿着由箭头图示的指定的路径行进时能量转移区域160的主要方式(grandness)。焊嘴150可连续不断地或者以离散的间隔行进穿过第一工件110。在使用离散的间隔的情况下,焊嘴150(i)在第一焊接区域中形成焊缝,(ii)从第一焊接区域凸起,(iii)行进至第二焊接区域,以及(iv)下降以便在第二焊接区域中形成第二焊缝。

回去参照图1,在步骤109处,工件110和工件120接合以形成具有焊缝宽度170的焊缝。如图所示,气穴180形成于焊缝宽度170中。当导能件130熔化时,空气被捕获在焊缝中,形成气穴180,气穴180示出为在步骤106处形成并且在步骤109处在成品中出现。气穴180削弱焊缝的强度并且可导致过早损坏。

发明内容

由于上述缺陷,所以存在创建减少和/或消除气穴出现的超声波焊缝的需要。所提出的系统和方法将布置导能件或者可替换的焊嘴,以减少和/或消除超声波焊缝内的气穴出现。

根据本技术,导能件将以预定的方式布置和/或配置以避免气隙形成。在一个实施例中,所述导能件具有不同的高度,比如以形成一个或多个逐渐减小的轮廓。可替换地,或者此外,所述导能件中的一个或多个可本身具有逐渐减小的轮廓。

此外,焊嘴可以以预定的方式布置和/或配置以避免气隙形成。在一个实施例中,所述焊嘴本身形成逐渐减小的轮廓。在一个实施例中,各个具有逐渐减小的轮廓和/或高度不同的所述导能件可与具有逐渐减小的轮廓的所述焊嘴结合使用。

在一个实施例中,用于接合工件的系统配置为使所述超声波能量集中在焊接区域内的一个或多个位置处,促进多个导能件的顺序熔化。

在某些实施例中,焊嘴专门配置用于减少所述超声波焊缝中的气穴。在常规焊接系统(例如,图1)中,由于所述工件的材料的表面中的小幅变化,所以空气可在形成第一工件与第二工件之间的接合部期间被捕获。配置用于减少气穴的所述焊嘴在一个实施例中配置用于促进始于能量转移区域的中心处的焊缝形成,其中,由配置用于减少气穴的所述焊嘴的超声波振动产出的热量被转移通过所述第一工件。在某些实施例中,当与常规焊嘴相比时,配置用于减少气穴的所述焊嘴减少在超声波焊接期间形成的所述能量转移区域的尺寸。所述焊缝接着在所形成的接合部内从所述能量转移区域的中心扩展。

在某些实施例中,所述焊嘴专门配置用于通过促进所述多个导能件的顺序熔化而减少所述超声波焊缝中的气穴。配置用于减少气穴的所述焊嘴的好处是:其创建了相当小的能量转移区域,促进导能件的顺序熔化,这允许包围各个导能件的空间在相邻的导能件的熔化之前(例如,在完成熔化或基本上熔化之前)被填充,从而减少或消除所述焊接区域内的气穴。

在一个实施例中,所述能量转移区域的减少导致焊缝宽度的中心接收更大的能量转移,导致在所述焊缝宽度的中心处的导能件首先熔化。

在某些实施例中,各个具有逐渐减小的轮廓和/或高度不同的所述导能件促进所述多个导能件顺序地熔化。给在所述第二工件上的所述导能件的高度定轮廓,这促进所述导能件随着所述第一工件顺序地熔化。顺序地熔化所述导能件,而不是像常规技术一样同时熔化,这减少或消除了所述焊缝内的气穴。

在一个实施例中,包括所述导能件的所述系统配置为使定位在所述焊缝的中心处的导能件首先熔化。随着所述第一工件通过从所述焊嘴转移的能量而温度增加,与所述第一工件接触的所述中心导能件的分子也开始温度增加。温度的增加导致所述中心导能件内的分子振动,产出熔化所述中心导能件的热能。所述中心导能件熔化之后,分子的振动在相邻的导能件中引起热加热,从而导致所述相邻的导能件的熔化。

在某些实施例中,配置用于减少气穴的所述焊嘴与任何导能件高度和/或形状的所述逐渐减少的轮廓结合使用。

本技术还包括一种用于通过使用超声波能量来接合工件的方法,其中,通过使用上述特征中的任何一个,所述超声波能量集中在焊缝宽度内的位置或区域处,导致多个导能件的顺序熔化。

本发明还公开了如下技术方案。

1、一种方法,用于接合第一工件和第二工件,所述方法包括:

提供所述第一工件、所述第二工件和多个导能件,产生一种系统,其中,所述导能件配置并且定位在所述第一工件与所述第二工件之间,以响应于向所述系统施用能量而被顺序地熔化;以及

向所述工件中的至少一个施用能量,顺序地熔化所述多个导能件,在所述第一工件与所述第二工件之间形成基本上无空隙的焊缝。

2、根据方案1所述的方法,其中,所述第一工件配置用于接收所施用的能量,并且所述多个导能件中的至少一个定位在所述第一工件的第一界面表面处。

3、根据方案1所述的方法,其中,配置为顺序地熔化的所述导能件配置为使所施用的能量最初大致集中在焊接区域的中心部分处,通过使用所述导能件将所述第一工件和所述第二工件接合在所述焊接区域的所述中心部分处。

4、根据方案1所述的方法,其中,配置为顺序地熔化的所述导能件包括具有逐渐减小的高度的所述导能件中的至少一个。

5、根据方案1所述的方法,其中,配置为顺序地熔化的所述导能件包括:包括第一材料的第一导能件和包括第二材料的第二导能件,以便所施用的能量基于所述第一材料与所述第二材料之间的差异而最初大致集中在包括所述第一材料的所述第一导能件处。

6、根据方案1所述的方法,其中,配置为顺序地熔化的所述导能件包括具有第一高度的至少一个第一导能件,所述第一高度大于所述多个导能件中的其余导能件的高度,以便所施用的能量在达到所述其余导能件之前最初大致集中在具有所述第一高度的所述第一导能件处。

7、根据方案6所述的方法,其中,配置为顺序地熔化的所述导能件包括的所述其余导能件中的至少一个具有小于所述第一高度的第二高度,且定位为与具有所述第一高度的所述第一导能件相邻。

8、根据方案1所述的方法,其中,施用所述能量包括:使用半球状焊嘴来施用所述能量,所述半球状焊嘴配置用于促进从所述半球状焊嘴朝着所述导能件中的至少一个发出的能量的集中。

9、一种系统,用于接合第一工件和第二工件,所述系统包括:

多个导能件,其配置为定位在所述第一工件的第一界面表面和所述第二工件的第二界面表面中的一个处,以便在所述系统的操作期间通过所述系统的焊接区域中的基本上无空隙的焊缝来将所述第一工件的所述第一界面表面与所述第二工件的所述第二界面表面接合在一起,

其中,配置为定位在所述第一界面表面与所述第二界面表面中的一个处以接合所述第一界面表面与所述第二界面表面的所述导能件配置为响应于输入能量的施用而顺序地熔化,以便在所述系统的操作期间在所述焊接区域内形成所述基本上无空隙的焊缝。

10、根据方案9所述的系统,所述系统进一步包括所述第一工件和所述第二工件,其中,所述第一工件配置为接收所述输入能量,并且所述多个导能件中的至少一个定位在所述第一工件的所述第一界面表面处。

11、根据方案9所述的系统,其中,配置为顺序地熔化的所述导能件配置为使所述输入能量最初大致集中在所述焊接区域的中心部分处。

12、根据方案9所述的系统,其中,配置为顺序地熔化的所述导能件包括具有逐渐减小的高度的所述导能件中的至少一个。

13、根据方案9所述的系统,其中,配置为顺序地熔化的所述导能件包括:包括第一材料的第一导能件和包括第二材料的第二导能件,以便所述输入能量基于所述第一材料与所述第二材料之间的差异最初大致集中在包括所述第一材料的所述第一导能件处。

14、根据方案9所述的系统,其中,配置为顺序地熔化的所述导能件包括所述导能件中的第一导能件,所述第一导能件具有第一高度,所述第一高度大于所述多个导能件中的其余导能件的高度,以便所述输入能量在达到所述其余导能件之前最初大致集中在具有所述第一高度的所述第一导能件处。

15、根据方案14所述的系统,其中,配置为顺序地熔化的所述导能件包括的所述其余导能件中的至少一个具有小于所述第一高度的第二高度,且定位为与具有所述第一高度的所述第一导能件相邻。

16、根据方案9所述的系统,其中,所述系统包括半球状焊嘴,所述半球状焊嘴配置用于促进从所述半球状焊嘴朝着所述导能件中的至少一个发出的能量的集中。

17、一种系统,用于接合第一工件和第二工件,所述系统包括:

具有第一高度的第一导能件;以及

具有第二高度的第二导能件,所述第二高度小于所述第一高度,所述第二导能件配置为定位为与所述第一导能件相邻,

其中,所述第一导能件和所述第二导能件配置为定位在所述第一工件的第一界面表面和所述第二工件的第二界面表面中的一个处,以接合所述第一界面表面和所述第二界面表面,并且配置为响应于向所述系统施用输入能量而顺序地熔化,以便在所述系统的操作期间在焊接区域中形成基本上无空隙的焊缝。

18、根据方案17所述的系统,所述系统进一步包括所述第一工件和所述第二工件,其中,所述第一工件配置为接收所述输入能量,并且所述多个导能件中的至少一个定位在所述第一工件的所述第一界面表面处。

19、根据方案17所述的系统,其中,配置为顺序地熔化的所述导能件配置为使所述输入能量最初大致集中在所述焊接区域的中心部分处。

20、根据方案17所述的系统,其中,所述系统包括半球状焊嘴,所述半球状焊嘴配置用于促进从所述半球状焊嘴朝着所述第一导能件发出的能量的集中。

本技术的其他方面部分地将很明显并且部分地将在下文指出。

附图说明

图1图示了使用导能件的常规超声波焊接工艺。

图2图示了图1的常规工艺的透视图。

图3图示了示例性超声波焊接组件的侧视图,其使用修改的超声波焊嘴和在导能件高度中逐渐减小的轮廓。

图4图示了图3的超声波焊接组件的透视图,其利用具有超声波焊接工艺的点导能件。

图5图示了图3的超声波焊接组件的透视图,其利用具有超声波焊接工艺的连续的导能件。

图6图示了图3的超声波焊接组件的透视图,其利用可替换的超声波焊接工艺。

图7图示了使用图3的示例性超声波焊接组件的超声波焊接工艺。

具体实施方式

根据需要,本公开的详细实施例在本文中公开。所公开的实施例仅仅是示例,其可以多种形式和可替换的形式以及其组合来实施。例如,如本文中使用的,示例性、图示性以及相似术语宽泛地指作为图解、样本、模型或模式的实施例。

说明书要在说明书的精神内得以广泛地理解。例如,本文对任何两个部件之间的连接的提及意在包含:这两个部件相互直接连接或间接连接。作为另一个示例,本文中描述的单个元件,比如与一个或多个功能结合描述的单个元件,应理解为覆盖使用不只一个元件来执行功能的实施例。并且反之亦然——即,本文与一个或多个功能结合描述的多个元件的描述应理解为覆盖使用单个元件执行功能的实施例。

附图并不一定按照比例绘制,并且某些附图可被夸大或缩小,以便示出特定元件的细节。在某些示例中,为了避免使本公开含糊不清,就没有详细地描述已知的元件、系统、材料或方法。因此,本文公开的特殊结构和功能细节不应理解为限制性的,而是仅仅作为权利要求书的基础和作为教导本领域的技术人员从多方面采用本公开的代表性基础。

Ⅰ.本公开的概述——图3至图6

图3图示了包括待通过焊接结合的第一工件210和第二工件220的焊接系统。尽管在本文中超声波焊接被描述为主要示例,但本技术可包括其他焊接类型,并且不限于超声波焊接。第一工件210和第二工件220在材料结构中可相似。例如,第一工件210和第二工件220均可由聚合物复合材料组成。相反,第一工件210可以是与第二工件220不同的材料。

在某些示例中,工件210和220中的一个或多个可包括但不限于聚合物,比如(功能化的)聚碳酸酯、聚烯烃(例如,聚乙烯和聚丙烯)、聚酰胺(例如,尼龙)、聚丙烯酸酯或丙烯腈丁二烯苯乙烯。

在其他实施例中,工件210和220中的一个或多个可包括但不限于比如增强塑料的合成物。增强塑料可包括上面列出的示例性聚合物中的任何一种,并且增强物可包括如下各项中的一种或多种:黏土、玻璃、碳、呈颗粒形式的聚合物、(纳米、短或长)纤维、(纳米尺寸或微米尺寸的)薄板、晶须等等。

工件210和220中的至少一个可包括合成的或无机的分子。尽管所谓的生物聚合物(或者绿色聚合物)的使用在增加,但石油基聚合物仍然更常见。工件210和220中的一个或两个的材料也可包括可回收的材料,比如聚对苯二甲酸丁二醇酯(PBT)聚合物,其大约是消费后的聚对苯二甲酸乙二醇酯(PET)的百分之八十五。在一个实施例中,工件210和220中的一个或两个包括某种塑料。在一个实施例中,材料包括热塑性塑料。

在一个实施例中,工件210和220中的一个或两个包括合成物。例如,在一个实施例中,工件210和220中的一个或两个包括纤维增强聚合物(FRP)合成物,比如碳纤维增强聚合物(CFRP)或玻璃纤维增强聚合物(GFRP)。合成物可以是例如玻璃纤维合成物。在一个实施例中,FRP合成物是混合塑料-金属合成物(例如,包含金属加强纤维的塑料合成物)。在某些实施方式中的材料包括聚酰胺级聚合物,其通常可称为聚酰胺。在一个实施例中,工件210和220中的一个或两个的材料包括丙烯腈-丁二烯-苯乙烯(ABS)。在一个实施例中,工件210和220中的一个或两个的材料包括聚碳酸酯(PC)。工件210和220中的一个或两个的材料还可包括一种树脂。示例性树脂包括玻璃纤维加强聚丙烯(PP)树脂、PC/PBT树脂和PC/ABS树脂。

第一工件210包括上表面212和下表面214,并且第二工件220包括上表面222和下表面224。工件210和220一接合,第一工件210的下表面214就和第二工件的上表面222接触并且彼此固定。

在常规技术(例如,图1)中描述的工艺生成气穴的一个原因是超声波能量集中在第一工件110的大表面区域上。在本技术中,为了减少和/或消除焊缝内的气穴,施用至第一工件220的超声波能量可集中在一个或多个位置,例如,在焊接区域240(在图4和图5中示出)的中心处。为了将超声波能量例如朝着焊接区域240的中心处引导,(i)导能件可横跨焊缝的宽度形成逐渐减小的高度轮廓,(ii)导能件中的至少一个可本身具有逐渐减小的轮廓,并且/或者(iii)焊嘴的形状可逐渐减小以使能量转移区域最小化。

A.导能件

将超声波能量比如朝着焊接区域240的中心处引导的一个方式是:使横跨焊缝宽度270的导能件的高度逐渐减小。逐渐减小的高度轮廓或形状的示例性图示在图3中示出,其中,顶点与通过与焊嘴初始接触而形成的能量转移区域260的中心对齐。如联合图7所描述的,能量转移区域260可通过导能件继续在第一工件210和/或第二工件220的某些或全部材料上扩张。

导能件可位于或者第一工件210上,或者第二工件220上或者两者上。在某些实施例中,导能件位于与焊嘴接触的工件上。例如,当工件210和220包括相似的材料时,导能件可放置在与焊嘴接触的第一工件210上。焊嘴250可专门配置为如所提及和在图3中所示那样。

在其他实施例中,当待被焊接的工件是不同的材料时,导能件可放置在具有最高熔化温度和/或刚度的工件上或其部分上。例如,参照图3,其中,工件210和220包括不同的材料,导能件可放置在具有比第一工件210更高的熔化温度的第二工件220上。

在其他实施例中,当待焊接的工件是不同的材料时,导能件可放置在具有最低熔化温度和/或刚度的工件上。例如,如果工件210和220包括不同的材料,那么导能件可放置在与焊嘴250接触的第一工件210的下表面214上。

根据一个实施例,当使导能件的高度轮廓逐渐减小时,处于能量转移区域260的中心(通常是焊接区域240的中心)处的导能件是最高的。具体地,当与焊接区域240内的其他导能件相比时,第一导能件230(出于图示目的而加上阴影)应是最高的。将第一导能件230定位在焊接区域240的中心处开始熔化来自第一导能件230的材料,在相邻的导能件熔化之前填满包围第一导能件230的空间。使较高的导能件比较短的导能件较早熔化,这消除或者至少减少超声波焊缝(例如,区域240的焊缝)内的气穴形成,这是因为在相邻的导能件熔化之前,在较高的导能件与相邻的较短的导能件之间的空间由熔化的导能件材料(例如,大多数或完全来自较高的导能件)填充。换句话说,该系统设计为促进分布的导能件顺序地而不是同时熔化,从而允许各个导能件熔化并且填充包围该导能件的剩余空间。

导能件可形成或者选择为具有在焊缝内创建逐渐减小的分布的任何期望高度。相应地,导能件可具有任何数量的高度水平——例如,四组较短的导能件、五组较短的导能件等。

横跨图4的示例性模式中示出的焊接区域240,与第一导能件230相邻的各个导能件均比第一导能件230低,提供关于焊接区域240的中心的对称性。具体地,导能件230比第二导能件232(出于图示目的,通过画影线填充)高。相似地,第二导能件232比第三导能件234高。随着焊嘴250移动至各个焊接区域240,在各个区域240中的导能件230、232、234的逐渐减小的高度使得各个点焊从焊接区域240的中心处向外形成。

在一个实施例中,导能件中的一个或多个可本身具有逐渐减小的轮廓,如图3所示。逐渐减小的高度允许导能件从导能件的中心(例如,尖端)处向外熔化。例如,第一导能件230可包含尖端,由尖端内的分子的振动产出的热能一释放,该尖端就熔化。产出的热能导致尖端中的分子温度增加,从而导致第一导能件230的熔化,在第一导能件230中,通常从导能件230的中心处向外熔化。

在某些实施例中,使导能件230、232、234的高度和/或轮廓逐渐减小,这通过沿着焊缝长度272使用点或间隔、超声波焊接而形成连续的焊缝模式,如在图5中示出。使导能件的高度和/或轮廓逐渐减小可用在各个点焊之间有距离的施用情况中。各个点焊之间的距离可从一个点焊的中心至相邻的点焊的中心(中心至中心)进行测量。

比如焊嘴250的尺寸(例如,焊嘴的曲率半径)、工件210和220的材料的熔化温度以及工件210和220的材料的刚度等等这些因素可影响各个点焊之间的距离。作为示例,随着焊嘴的曲率半径基于施用而增加/减小,各个点焊之间的距离也可增加或减小。

距离可基于比如工件210和220的刚度和焊嘴的直径等因素从约10毫米(mm)至约120mm变化。在一个实施例中,例如,在焊角(weldhorm)具有13毫米(mm)直径的情况下,焊缝之间的距离(从中心至中心测量)至少为13mm。进一步地,距离可例如从约13mm至约200mm的范围内,示例性距离从约20mm至约120mm。

在某些实施例中,当在超声波点焊期间使用连续的焊缝模式时,焊嘴(例如,焊嘴250)位于中心能量转移区域260处,中心能量转移区域260位于焊接区域240的中心处。第一导能件230位于接近能量转移区域260的中心处。包围第一导能件230的是多个第二导能件232。相似地,多个第三导能件234包围多个第二导能件232。

当使用超声波点焊来沿着行进方向(在图5中图示为箭头)形成连续的焊缝模式时,焊缝应从焊接区域240的中心处向外形成。具体地,在焊接区域240内,第一导能件230熔化而填充位于第一导能件230与多个第二导能件230之间的空间。接着,多个第二导能件232熔化而填充位于各个多个第二导能件232与各个多个第三导能件234之间的空间。最后,焊接区域240内的多个第三导能件232熔化而填充位于焊接区域240内的多个第三导能件232与不在焊接区域240内的多个第三导能件232之间的空间。一旦焊接区域240内的导能件230、232、234熔化,位于焊接区域240外部的多个第三导能件234由于转移自焊接区域240内的导能件的能量和/或由于来自在各个点焊期间扩张能量转移区域260的能量而熔化。

如在图5中示出,导能件可位于焊接区域的外部,允许通过使用超声波点焊来形成连续的焊缝模式。在某些实施例中,位于焊接区域240外部的导能件可以全部都是相同的高度。例如,如在图5中示出,位于焊接区域240外部的导能件的尺寸设置为与第三导能件234的尺寸。

在其他实施例中,位于焊接区域240外部的导能件可在高度上逐渐减小,以有利于位于焊接区域240外部的导能件的顺序熔化。此外,在位于焊接区域240外部的导能件逐渐减小的情况下,沿着行进方向形成的多个超声波点焊行可形成在各个超声波点焊行从另一行偏移开的位置处。

在某些实施例中,导能件230、232、234的定轮廓可沿着焊缝长度272重复地进行,以通过使用如在图6中示出的连续的超声波焊接来形成连续的焊缝模式。具体地,第一导能件230位于焊缝宽度270的中心处,接近能量转移区域260。沿着在第一导能件230的任意一侧上的焊缝宽度270的是第二导能件232。相似地,各个第二导能件232的旁边是沿着焊缝宽度的第三导能件234。具有位于中心处的第一导能件230并且从该中心处开始导能件高度降低的沿着焊缝宽度270的模式,沿着焊缝长度272重复。

通过沿着焊缝长度272重复导能件230、232、234的定轮廓,气穴就沿着焊缝长度272得以减少/消除。当使用连续的超声波焊接来沿着行进方向(在图6中图示为箭头)形成连续的焊缝模式时,焊缝应从焊缝宽度270的中心处开始向外形成并且沿着焊缝长度272连续。具体地,第一导能件230熔化而填充第一导能件230周围的空间。接着第二导能件232熔化,随后第三导能件234熔化。导能件230、232、234的这种顺序熔化沿着焊缝长度272发生。

尽管导能件230、232、234在图中图示为圆形的形状,但技术人员应理解,导能件可根据不同的几何形状成形,比如但不限于,方形、三角形和梯形等。下文描述的工艺可应用至不同形状和尺寸的导能件,只要导能件在高度上逐渐减小,最高的导能件定位在中心能量转移区域260处。

B.焊嘴

将超声波能量朝着焊缝宽度270的中心处引导的另一个方式是:使用焊嘴250,其在图3至图7中示出。与常规斜切的边缘或倒棱的边缘焊嘴不同,焊嘴250的形状成形为产出能量转移区域260,能量转移区域260最小化与第一工件210的初始接触。最小化初始接触使转移通过第一工件210的超声波能量集中至第一导能件230。

焊嘴250可包括例如如在图3至图7中示出的圆形的逐渐减小的轮廓。当焊嘴250具有圆形的逐渐减小的轮廓时,焊嘴250类似于半球的形状。圆形的逐渐减小的轮廓具有曲率半径252(在图3中示出),曲率半径252是虚圆的半径,其中,虚圆的弧度与焊嘴250的表面的曲线最佳配合。曲率半径252可在约25mm与约200mm之间,示例性半径在约50mm与约100mm之间。

圆形的逐渐减小的轮廓也可根据曲率距离254(在图3中示出)限定出,曲率距离254是使焊嘴250的边缘从第一工件110的上表面212隔开的距离。曲率距离254可在约200微米(μm)与约2mm之间。例如,在曲率半径252大概为200mm的情况下,曲率距离254可为约200μm。然而,在曲率半径252大概为25mm的情况下,曲率距离可为约1.5mm。

焊嘴250在第一工件210的上表面212上创建接触,形成能量转移区域260,能量转移区域260是这样的区域,其中由焊嘴的超声波振动产出的热量被转移通过第一工件210。当与常规技术相比时,在焊嘴250与上表面212之间创建的接触由于圆形的逐渐减小的轮廓而减少,从而减小在与上表面212初始接触时生成的能量转移区域260。减小在初始接触时生成的能量转移区域260是有益地,这是因为随着焊接继续进行,第一工件210内的材料软化,允许焊嘴250的额外区域与第一工件210接触。与焊嘴250的额外接触随着时间的推移会固有地增加能量转移区域260的尺寸并且促进导能件230、232、234顺序地熔化,如在图7中示出和下文所描述。

在某些实施例中,由于工件210和220的表面中的小幅变化,导致空气被捕获在形成的接合部内,从而形成气穴,焊嘴250可独立于导能件使用以减少气穴。焊嘴250促进始于能量转移区域260的中心处的焊缝形成。焊缝在形成的接合部内从能量转移区域260的中心向外扩展。

在某些实施例中,焊嘴250可与导能件230、232、234的圆形的逐渐减小的轮廓结合使用以将超声波能量朝着焊缝宽度270的中心引导。在这些实施例中,焊嘴250的圆形的逐渐减小的轮廓应是导能件230、232、234的轮廓的倒转。例如,如果第一导能件230位于焊缝宽度270的中心处,那么焊嘴250应成形为使创建在焊嘴250与第一工件210的上表面212之间的接触大概接近第一导能件230。

尽管焊嘴250图示为圆形(半球状)的形状,但技术人员应理解,焊嘴可根据不同的几何形状成形,比如棱锥形。下文描述的工艺可应用至不同形状和尺寸的焊嘴,只要焊嘴提供将超声波能量朝着焊缝宽度270的中心处引导。

Ⅱ.超声波焊接的工艺——图7

图7通过使用图3的示例性超声波焊接组件图示了超声波焊接的工艺。

在步骤200处,第一工件210定位为与第二工件220接触,第二工件220包含具有逐渐减小的高度和/或逐渐减小的轮廓的导能件230、232、234。焊嘴250定位为大概接近第一工件210的上表面212。

在步骤203处,焊嘴250与第一工件210的上表面212接触,创建能量转移区域260。能量转移区域260通过增加第一导能件230的温度而开始,增加第一导能件230的温度导致第一导能件230内的分子振动并且产出使第一导能件230熔化的热能。第一导能件230的熔化导致在第一导能件230的任意一侧上的第二导能件232的温度增加。温度增加导致第二导能件232内的分子振动并且产出使第二导能件232熔化的热能。相似地,第二导能件232的熔化使得第三导能件234的温度增加,温度增加导致分子的振动,这产出使第三导能件236熔化的热能。

如在步骤206处示出,第一工件210的下表面214增加与导能件230、232、234的接触。附加地,随着第一工件210的材料软化,焊嘴250增加与第一工件210的上表面212的接触。

焊嘴250与第一工件210的上表面212的增加的接触随着时间的推移会增加能量转移区域260的尺寸,能量转移区域260分阶段熔化导能件230、232、234,从而减少或消除气隙的可能性。具体地,在工艺开始(例如,步骤203)后,能量转移区域260形成在焊嘴250定位在与第一工件210相邻的位置。随着工艺继续(例如,步骤206),能量转移区域260扩张通过第一工件210的材料。能量转移区域260可扩张通过第一工件210、第二工件220和/或导能件230、232、234(未示出)的某些或全部。能量转移区域260扩张的尺寸可取决于比如以下因素:工件210和220的材料成分、导能件230、232、234的材料成分以及焊嘴250与第一工件210接触的时间等等。

如在步骤209处示出,这样生成的焊缝没有气隙。气隙的消除固有地增加了超声波焊缝的完整性。

Ⅲ.选择的特征

本文中上文描述了本技术的许多特征。本部分概括地呈现本技术的某些选择的特征。本部分只强调本技术的许多特征中的几个,并且以下段落不意在是限制性的。

本技术的许多好处中的一个是:有能力形成高完整性的、高稳健的、无空隙的或者与常规技术相比至少具有非常少量的空隙的超声波焊缝。没有空隙的焊缝更加坚硬并且强度更高。使用逐渐减小的形状的焊嘴、逐渐减小的形状的导能件和/或逐渐减小的导能件轮廓,这减少并且/或者消除将空气捕获在超声波焊缝中的可能性。

本技术的一个方面是:从焊缝宽度或焊接区域的中心处朝着焊缝宽度或区域的边缘形成超声波焊缝。从焊缝宽度或区域的中心处形成焊缝会促进导能件以预定的多个阶段熔化,从而填充区域间隙,而不是像常规设计中所做的那样同时熔化导能件。

Ⅳ.结语

本文公开了本公开的多个实施例。所公开的实施例仅仅是示例,示例可以以多种和替换形式以及其接合来实施。

上文描述的实施例仅仅是实施方式的示例性图示,列出这些实施方式是为了更加清楚地理解本公开的原理。

在不背离权利要求书的范围的情况下,可对上文描述的实施例作出变型、修改和组合。所有这些变型、修改和组合在此均包括在在本公开和所附权利要求书的范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号