首页> 中国专利> 蓄电元件的寿命估计装置、寿命估计方法以及蓄电系统

蓄电元件的寿命估计装置、寿命估计方法以及蓄电系统

摘要

本发明提供一种寿命估计装置(100),估计蓄电元件(200)能使用的累计剩余期间即剩余寿命,具备:关系式获取部(110),其获取关系式,在该关系式中,经过蓄电元件(200)的使用期间的累计值即累计使用期间的时间点下的蓄电元件(200)的直流电阻或者交流电阻的电阻值,由包含该累计使用期间的三次以上的函数或者指数函数的项的式子来表示;和剩余寿命估计部(120),其利用获取到的该关系式来估计蓄电元件(200)的剩余寿命。

著录项

  • 公开/公告号CN105531595A

    专利类型发明专利

  • 公开/公告日2016-04-27

    原文格式PDF

  • 申请/专利权人 株式会社杰士汤浅国际;

    申请/专利号CN201480049885.2

  • 发明设计人 田尾洋平;山手茂树;

    申请日2014-08-11

  • 分类号G01R31/36;H01M10/48;H02J7/00;

  • 代理机构中科专利商标代理有限责任公司;

  • 代理人吴秋明

  • 地址 日本国京都府

  • 入库时间 2023-12-18 15:54:55

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-12-04

    授权

    授权

  • 2016-05-25

    实质审查的生效 IPC(主分类):G01R31/36 申请日:20140811

    实质审查的生效

  • 2016-04-27

    公开

    公开

说明书

技术领域

本发明涉及估计蓄电元件能使用的累计剩余期间即剩余寿命的寿命 估计装置、寿命估计方法、以及具备蓄电元件和该寿命估计装置的蓄电系 统。

背景技术

锂离子二次电池等蓄电元件被用作笔记本电脑、便携式电话等移动设 备的电源,但是近年来在电动汽车的电源等广泛的领域中也被使用。并且, 在这样的蓄电元件中,准确地掌握蓄电元件能使用的累计剩余期间即剩余 寿命极其重要。在此,以往为了估计蓄电元件的剩余寿命而提出了估计蓄 电元件的直流电阻的随时间变化的技术(例如参照非专利文献1)。

在非专利文献1中公开了:根据电池的直流电阻的随时间变化由试验 时间的N次函数表示的经验式来估计给定试验时间内的该直流电阻的随 时间变化的技术。在此,上述经验式中的N为1/2、1或者1.52,根据试 验模式而变化。

在先技术文献

非专利文献

非专利文献1:J.Beltetal.,JournalofPowerSources,vol.196,2011, page10213-10221.

发明内容

发明要解决的课题

然而,在上述现有技术中存在无法准确地估计蓄电元件的剩余寿命的 问题。

本发明正是为了解决上述问题而完成的,其目的在于,提供一种能够 准确地估计蓄电元件的剩余寿命的寿命估计装置、寿命估计方法以及蓄电 系统。

用于解决课题的手段

为了实现上述目的,本发明的一形态所涉及的寿命估计装置估计蓄电 元件能使用的累计剩余期间即剩余寿命,其特征在于,具备:关系式获取 部,其获取关系式,在该关系式中,经过所述蓄电元件的使用期间的累计 值即累计使用期间的时间点下的所述蓄电元件的直流电阻或者交流电阻 的电阻值,由包含所述累计使用期间的三次以上的函数或者指数函数的项 的式子来表示;和剩余寿命估计部,其利用获取到的所述关系式来估计所 述剩余寿命。

另外,本发明不仅能够作为这种寿命估计装置来实现,还能作为具备 蓄电元件和对该蓄电元件的剩余寿命进行估计的寿命估计装置的蓄电系 统来实现。此外,本发明也能够作为以寿命估计装置所进行的特征处理为 步骤的寿命估计方法来实现。此外,本发明还能够作为具备寿命估计装置 中所含的特征处理部的集成电路来实现。此外,本发明也能够作为使计算 机执行寿命估计方法中所包含的特征处理的程序来实现,或者作为记录有 该程序的计算机可读取的CD-ROM等记录介质来实现。并且,这种程序 能够经由CD-ROM等记录介质以及因特网等传输介质来流通是不言而喻 的。

发明效果

根据本发明,能够准确地估计蓄电元件的剩余寿命。

附图说明

图1是具备本发明的实施方式所涉及的寿命估计装置的蓄电系统的 外观图。

图2是表示本发明的实施方式所涉及的寿命估计装置的功能构成的 框图。

图3是表示本发明的实施方式所涉及的蓄电元件数据的一例的图。

图4是用于说明本发明的实施方式所涉及的关系式获取部所获取的 关系式的图。

图5A是用于说明为了获得本发明的实施方式所涉及的关系式获取部 所获取的关系式而需要的期间的图。

图5B是用于说明为了获得本发明的实施方式所涉及的关系式获取部 所获取的关系式而需要的期间的图。

图6是表示本发明的实施方式所涉及的寿命估计装置对蓄电元件的 剩余寿命进行估计的处理的一例的流程图。

图7是表示本发明的实施方式所涉及的寿命估计装置对蓄电元件的 剩余寿命进行估计的处理的一例的流程图。

图8A是利用直流电阻与循环数的图表来表示本发明的实施方式所涉 及的寿命估计装置所发挥的效果的图。

图8B是表示本发明的实施方式所涉及的关系式获取部所获取的关系 式中的关系式获取期间的图。

图9是通过与比较例的比较来表示本发明的实施方式所涉及的寿命 估计装置所发挥的效果的图。

图10A是利用交流电阻与循环数的图表来表示本发明的实施方式所 涉及的寿命估计装置所发挥的效果的图。

图10B是表示本发明的实施方式所涉及的关系式获取部所获取的关 系式中的关系式获取期间的图。

图11是通过与比较例的比较来表示本发明的实施方式所涉及的寿命 估计装置所发挥的效果的图。

图12是表示本发明的实施方式的变形例1所涉及的寿命估计装置的 构成的框图。

图13是表示本发明的实施方式的变形例1所涉及的关系式获取部获 取关系式的处理的一例的流程图。

图14是说明本发明的实施方式的变形例2所涉及的寿命估计装置在 电池A且直流电阻的情况下所发挥的效果的图。

图15是用于说明本发明的实施方式的变形例2所涉及的寿命估计装 置在电池A且交流电阻的情况下所发挥的效果的图。

图16是用于说明本发明的实施方式的变形例2所涉及的寿命估计装 置在电池B且直流电阻的情况下所发挥的效果的图。

图17是用于说明本发明的实施方式的变形例2所涉及的寿命估计装 置在电池B且交流电阻的情况下所发挥的效果的图。

图18是表示本发明的实施方式的变形例3所涉及的寿命估计装置的 构成的框图。

图19是表示本发明的实施方式的变形例4所涉及的寿命估计装置的 构成的框图。

图20是表示由集成电路来实现本发明的实施方式所涉及的寿命估计 装置的构成的框图。

具体实施方式

在上述现有技术中存在无法准确地估计蓄电元件的剩余寿命的问题。

即,在以往的估计蓄电元件的直流电阻的随时间变化的技术中,由于 上述经验式中的N的值根据试验模式而变化,因此难以预测该N的值。 此外,纵使已预测出该N的值,但所估计的直流电阻的随时间变化的值 并不是十分准确。因而,在现有技术中,无法准确地估计蓄电元件的剩余 寿命。

本发明正是为了解决上述问题而完成的,其目的在于,提供一种能够 准确地估计蓄电元件的剩余寿命的寿命估计装置、寿命估计方法以及蓄电 系统。

为了实现上述目的,本发明的一形态所涉及的寿命估计装置估计蓄电 元件能使用的累计剩余期间即剩余寿命,其特征在于,具备:关系式获取 部,其获取关系式,在该关系式中,经过所述蓄电元件的使用期间的累计 值即累计使用期间的时间点下的所述蓄电元件的直流电阻或者交流电阻 的电阻值,由包含所述累计使用期间的三次以上的函数或者指数函数的项 的式子来表示;和剩余寿命估计部,其利用获取到的所述关系式来估计所 述剩余寿命。

根据该构成,寿命估计装置获取经过累计使用期间的时间点下的蓄电 元件的直流电阻或者交流电阻的电阻值由包含累计使用期间的三次以上 的函数或者指数函数的项的式子来表示的关系式,并利用该关系式来估计 蓄电元件的剩余寿命。在此,该电阻值随着累计使用期间的经过而值加速 地增加。并且,本申请发明者们经过潜心研究和实验的结果发现:该电阻 值的随时间变化由包含以累计使用期间为变量的三次以上的函数或者指 数函数的项的式子来表征。因此,寿命估计装置通过利用上述关系式从而 能够准确地表现该电阻值与累计使用期间的关系,因此能够准确地估计蓄 电元件的剩余寿命。

此外,也可以是所述关系式获取部获取所述电阻值由包含所述累计使 用期间的三次函数的多项式来表示的所述关系式。

根据该构成,寿命估计装置获取电阻值由包含累计使用期间的三次函 数的多项式来表示的关系式。在此,本申请发明者们经过潜心研究和实验 的结果发现:该电阻值由包含累计使用期间的三次函数的多项式来表示的 关系式高精度地表现了该电阻值的随时间变化。因此,寿命估计装置通过 利用上述关系式从而能够准确地表现该电阻值与累计使用期间的关系,因 此能够准确地估计蓄电元件的剩余寿命。

此外,也可以是所述关系式获取部将在所述关系式中用所述累计使用 期间对所述电阻值进行了二阶微分后的值成为正值的情况下的累计使用 期间设为关系式获取期间,并获取根据直至经过所述关系式获取期间的时 间点为止的所述电阻值与所述累计使用期间的关系而获得的所述关系式。

在此,在用累计使用期间对电阻值进行了二阶微分后的值成为负值的 情况下,由于电阻值相对于累计使用期间的图表以向上凸的函数(凹函数) 来表现,因此无法预测随着累计使用期间的经过而电阻值加速地增加这样 的状态。即,寿命估计装置通过获取根据直至经过在用累计使用期间对电 阻值进行了二阶微分后的值成为正值的情况下的累计使用期间的时间点 为止的电阻值与累计使用期间的关系而获得的关系式,从而能够预测随着 累计使用期间的经过而电阻值加速地增加这样的状态。因此,寿命估计装 置通过利用该关系式从而能够准确地表现该电阻值与累计使用期间的关 系,因此能够准确地估计蓄电元件的剩余寿命。

此外,也可以是所述关系式获取部根据直至经过所述关系式获取期间 的时间点为止的所述电阻值与所述累计使用期间的关系来计算所述关系 式,由此获取所述关系式。

根据该构成,寿命估计装置根据直至经过在用累计使用期间对电阻值 进行了二阶微分后的值成为正值的情况下的累计使用期间的时间点为止 的电阻值与累计使用期间的关系来计算关系式。由此,寿命估计装置不用 事前将该关系式存储在存储部中,便能够获取能预测随着累计使用期间的 经过而电阻值加速地增加这样的状态的关系式。因此,寿命估计装置通过 利用该关系式从而能够准确地表现该电阻值与累计使用期间的关系,因此 能够准确地估计蓄电元件的剩余寿命。

此外,也可以是所述关系式获取部获取所述电阻值与以在所述累计使 用期间上乘以给定的常量后的值为变量的指数函数成比例的所述关系式。

根据该构成,寿命估计装置获取电阻值与以在累计使用期间上乘以给 定的常量后的值为变量的指数函数成比例的关系式。在此,本申请发明者 们经过潜心研究和实验的结果发现:该电阻值与以在累计使用期间上乘以 给定的常量后的值为变量的指数函数成比例的关系式高精度地表现了该 电阻值的随时间变化。因此,寿命估计装置通过利用上述关系式从而能够 准确地表现该电阻值与累计使用期间的关系,因此能够准确地估计蓄电元 件的剩余寿命。

此外,也可以是所述剩余寿命估计部具备:电阻值获取部,其获取给 定的时间点下的所述电阻值即第一电阻值,并且获取所述蓄电元件的寿命 达到时间点下的所述电阻值即第二电阻值;期间获取部,其获取从所述关 系式获得的所述第一电阻值下的累计使用期间即第一累计使用期间,并且 获取从所述关系式获得的所述第二电阻值下的累计使用期间即第二累计 使用期间;和剩余寿命计算部,其从所述第二累计使用期间之中减去所述 第一累计使用期间,由此计算从所述给定的时间点起的所述蓄电元件的剩 余寿命。

根据该构成,寿命估计装置获取给定的时间点下的第一电阻值和蓄电 元件的寿命达到时间点下的第二电阻值,并获取从上述关系式获得的第一 电阻值下的第一累计使用期间和第二电阻值下的第二累计使用期间,从第 二累计使用期间之中减去第一累计使用期间,由此计算从给定的时间点起 的蓄电元件的剩余寿命。这样,寿命估计装置能够准确地估计蓄电元件的 剩余寿命。

此外,也可以是所述剩余寿命估计部还具备对所述关系式获取部获取 到的所述关系式进行修正的关系式修正部,所述剩余寿命估计部利用修正 后的所述关系式来估计所述剩余寿命。

根据该构成,寿命估计装置对上述关系式进行修正,并利用修正后的 该关系式来估计剩余寿命。这样,寿命估计装置通过对关系式进行修正来 提高该关系式的精度,从而能够准确地估计剩余寿命。

此外,也可以是所述蓄电元件是包含层状构造的锂过渡金属氧化物来 作为正极活性物质的锂离子二次电池,所述关系式获取部获取关于所述锂 离子二次电池的所述关系式,所述剩余寿命估计部估计关于所述锂离子二 次电池的所述剩余寿命。

根据该构成,蓄电元件是包含层状构造的锂过渡金属氧化物来作为正 极活性物质的锂离子二次电池。在此,本申请发明者们经过潜心研究和实 验的结果发现:在蓄电元件为该锂离子二次电池的情况下,根据上述关系 式能够高精度地表现劣化状态。因此,寿命估计装置能够准确地估计该锂 离子二次电池的剩余寿命。

以下,参照附图来说明本发明的实施方式所涉及的蓄电元件的寿命估 计装置以及具备该寿命估计装置的蓄电系统。另外,以下所说明的实施方 式均表示本发明的优选的一具体例。以下的实施方式所示的数值、形状、 材料、构成要素、构成要素的配置位置以及连接方式、步骤、步骤的顺序 等只为一例,并非限定本发明的主旨。此外,以下的实施方式中的构成要 素之中表示本发明的最上位概念的独立权利要求中未记载的构成要素作 为构成更优选方式的任意的构成要素来进行说明。

首先,说明蓄电系统10的构成。

图1是具备本发明的实施方式所涉及的寿命估计装置100的蓄电系统 10的外观图。

如该图所示,蓄电系统10具备:寿命估计装置100、多个(在该图 中为6个)蓄电元件200、和收纳寿命估计装置100以及多个蓄电元件200 的收纳壳体300。

寿命估计装置100被配置在多个蓄电元件200的上方,是搭载了对多 个蓄电元件200的寿命进行估计的电路的电路基板。具体而言,寿命估计 装置100与多个蓄电元件200连接,从多个蓄电元件200之中获取信息, 来估计多个蓄电元件200能使用的累计剩余期间即剩余寿命。关于该寿命 估计装置100的详细的功能构成的说明将后述。

另外,在此,虽然寿命估计装置100被配置在多个蓄电元件200的上 方,但寿命估计装置100可以被配置在任何位置。

蓄电元件200是具有正极和负极的非水电解质二次电池等二次电池。

此外,在该图中,6个矩形状的蓄电元件200被串联配置而构成了电 池组。另外,蓄电元件200的个数并不限定为6个,也可以为其他的多个 个数或者1个。此外,蓄电元件200的形状也并不特别限定。

在此,优选蓄电元件200是包含层状构造的锂过渡金属氧化物来作为 正极活性物质的锂离子二次电池。具体而言,作为正极活性物质,优选利 用Li1+xM1-yO2(M为从Fe、Ni、Mn、Co等中选择的1种或者2种以上 的过渡金属元素,0≤x<1/3,0≤y<1/3)等的层状构造的锂过渡金属氧化 物等。另外,作为该正极活性物质,也可以混合LiMn2O4、LiMn1.5Ni0.5O4等尖晶石型锂锰氧化物、LiFePO4等橄榄石型正极活性物质等、与上述层 状构造的锂过渡金属氧化物来使用。

此外,作为负极活性物质,只要为能够吸留释放锂离子的负极活性物 质,便能够适当使用公知的材料。例如,除了锂金属、锂合金(锂-硅、 锂-铝、锂-铅、锂-锡、锂-铝-锡、锂-镓、以及伍德合金等的含锂金属的合 金)之外,还可列举能够吸留/释放锂的合金、碳材料(例如石墨、难石 墨化碳、易石墨化碳、低温烧成碳、非晶碳等)、硅氧化物、金属氧化物、 锂金属氧化物(Li4Ti5O12等)、多聚磷酸化合物、或者一般被称作转换负 极的Co3O4、Fe2P等的、过渡金属和第14族至第16族元素的化合物等。

下面,说明寿命估计装置100的详细的功能构成。

图2是表示本发明的实施方式所涉及的寿命估计装置100的功能构成 的框图。

寿命估计装置100是估计蓄电元件200能使用的累计剩余期间即剩余 寿命的装置。如该图所示,寿命估计装置100具备:关系式获取部110、 剩余寿命估计部120以及存储部130。此外,在存储部130中存储有关系 式数据131以及蓄电元件数据132。

关系式获取部110获取关系式,在该关系式中,经过蓄电元件200 的使用期间的累计值即累计使用期间的时间点下的蓄电元件200的直流 电阻或者交流电阻的电阻值,由包含累计使用期间的三次以上的函数或者 指数函数的项的式子来表示。具体而言,在本实施方式中,关系式获取部 110获取由包含累计使用期间的三次函数的多项式来表示该电阻值的该 关系式。

在此,所谓累计使用期间,是指在蓄电元件200的使用开始时间点至 给定的时间点为止的期间内对蓄电元件200被使用的期间进行累积而得 到的合计期间。例如,在蓄电元件200被断续地使用的情况下,累计使用 期间表示减去蓄电元件200未被使用的不使用期间而得到的期间。另外, 该不使用期间的相减方法也可以不那么严格,可以将蓄电元件200的使用 开始时间点至给定的时间点为止的也包含该不使用期间在内的全部期间 设为累计使用期间。此外,作为累计使用期间的单位,优选为时间或者循 环(充放电次数),但只要为月、日等表征期间的单位,便可以利用任何 单位。

此外,所谓蓄电元件200的直流电阻或者交流电阻的电阻值,是指蓄 电元件200的内部电阻的电阻值,例如为第10秒的直流电阻或者1kHz 的交流电阻的电阻值。另外,第10秒的直流电阻根据第10秒的V-I(电 压-电流)曲线的斜率来测量。此外,所谓1kHz的交流电阻,是指通过将 1kHz的频率的交流电压或者交流电流施加给蓄电元件200而测量出的交 流电阻(交流阻抗)。

进一步具体而言,关系式获取部110将在该关系式中用累计使用期间 对电阻值进行了二阶微分后的值成为正值的情况下的累计使用期间设为 关系式获取期间,并获取根据直至经过该关系式获取期间的时间点为止的 电阻值与累计使用期间的关系而获得的该关系式。关于其详细内容将后 述。

另外,关系式获取部110从存储于存储部130的关系式数据131之中 读出上述关系式,由此来获取该关系式。即,关系式数据131是保持了用 于对蓄电元件200的剩余寿命进行估计的关系式的数据。关于该关系式的 详细内容将后述。

剩余寿命估计部120利用关系式获取部110获取到的关系式来估计蓄 电元件200的剩余寿命。在此,剩余寿命估计部120具备:电阻值获取部 121、期间获取部122以及剩余寿命计算部123。

电阻值获取部121获取给定的时间点(以下称作第一时间点)下的蓄 电元件200的电阻值即第一电阻值。即,电阻值获取部121通过测量该第 一时间点下的蓄电元件200的电阻值等来进行获取,并将获取到的值设为 该第一电阻值。

此外,电阻值获取部121获取蓄电元件200的寿命达到时间点(以下 称作第二时间点)下的电阻值即第二电阻值。即,电阻值获取部121通过 来自用户的输入等获取用户决定的值来作为蓄电元件200的寿命达到时 间点下的电阻值,并将获取到的值设为该第二电阻值。

然后,电阻值获取部121将获取到的第一电阻值以及第二电阻值存储 至存储部130的蓄电元件数据132。关于该存储部130中所存储的蓄电元 件数据132的详细内容将后述。

期间获取部122获取从上述关系式获得的第一电阻值下的累计使用 期间即第一累计使用期间。即,期间获取部122利用关系式获取部110 获取到的关系式来计算电阻值获取部121获取到的第一电阻值下的累计 使用期间,由此来获取上述第一时间点下的累计使用期间即该第一累计使 用期间。

此外,期间获取部122获取从上述关系式获得的第二电阻值下的累计 使用期间即第二累计使用期间。即,期间获取部122利用关系式获取部 110获取到的关系式来计算电阻值获取部121获取到的第二电阻值下的累 计使用期间,由此来获取上述第二时间点下的累计使用期间即该第二累计 使用期间。

另外,期间获取部122从存储于存储部130的蓄电元件数据132之中 读出第一电阻值以及第二电阻值,并利用该关系式来计算第一累计使用期 间以及第二累计使用期间,由此来获取。然后,期间获取部122将获取到 的第一累计使用期间以及第二累计使用期间存储至该蓄电元件数据132。

剩余寿命计算部123从期间获取部122获取到的第二累计使用期间之 中减去第一累计使用期间,由此计算从第一时间点起的蓄电元件200的剩 余寿命。具体而言,剩余寿命计算部123从存储于存储部130的蓄电元件 数据132之中读出第一累计使用期间以及第二累计使用期间,来计算该剩 余寿命。

即,所谓剩余寿命,是指给定的时间点(第一时间点)至寿命达到时 间点(第二时间点)为止的蓄电元件200能使用的累计使用期间。

图3是表示本发明的实施方式所涉及的蓄电元件数据132的一例的 图。

蓄电元件数据132是表示某时间点下的蓄电元件200的电阻值和该某 时间点下的蓄电元件200的累计使用期间的数据的集合。即,如该图所示, 蓄电元件数据132是“电阻值”与“累计使用期间”被建立了对应的数据 表格。并且,在“电阻值”中存储了表示第一时间点或者第二时间点等的 某时间点下的蓄电元件200的电阻值的值。此外,在“累计使用期间”中 存储了表示该某时间点下的蓄电元件200的累计使用期间的值。

接下来,详细说明关系式获取部110所获取的关系式。

图4是用于说明本发明的实施方式所涉及的关系式获取部110所获取 的关系式的图。具体而言,该图是表示蓄电元件200的电阻值与累计使用 期间的关系的图表。

此外,图5A以及图5B是用于说明为了获得本发明的实施方式所涉 及的关系式获取部110所获取的关系式而需要的期间的图。具体而言,这 些图是表示无法获得该关系式的关系式非获取期间、和能够获得该关系式 的关系式获取期间的图表。另外,图5B是以用累计使用期间对图5A的 图表的电阻值进行了一阶微分后的值为纵轴而示出的图表。

如图4所示,关系式获取部110所获取的关系式,能够通过进行以下 实验来获取。具体而言,在假定被重复使用的使用条件(电流值为规定值) 下,根据直至达到某劣化状态(例如该图的t0~t1的期间)的直流电阻或 交流电阻的电阻值R的变迁(R0~R1)来计算包含三次函数的多项式R=f (t)。

例如,在0、100、200以及300循环后实施直流或交流电阻测量,获 取(电阻值R,累计使用期间t)的数据对。进而,将两者的关系代入到 R=A×t3+B×t2+C×t+D中,来计算常量A、B、C以及D。

在此,作为电阻值R的测量方法,例如可列举以下的方法。即,将 已回收的电池在25℃下至少放置3个小时之后,以电池额定容量的 0.05CA来进行恒流放电(剩余放电),直至SOC(StateOfCharge:充电状 态)为0%。

而且,作为获取直流电阻的电阻值R的方法并不限定,例如能够例 示如下方法等,即,以0.2CA进行合计8个小时的恒流恒压充电直至SOC 为50%之后,将0.2、0.5、1CA等至少3点以上的放电电流的第10秒电 压(V)相对于各个放电电流(I)而绘制曲线,确认它们的斜率表现线 性,从而根据该V-I曲线的斜率来获取直流电阻的电阻值R。

此外,在获取交流电阻的电阻值R的情况下,利用交流阻抗测量器 来获取例如1kHz的电池的内部阻抗(例如SOC:0%)。

如以上,作为上述关系式,如以下的式1所示,获取以包含累计使用 期间t的三次函数的多项式来表征电阻值R的关系式。

R=f(t)=A×t3+B×t2+C×t+D(式1)

在此,A、B、C以及D为常量。根据以上,作为关系式获取部110 所获取的关系式,如上述的式1所示,能够获得:经过蓄电元件200的使 用期间的累计值即累计使用期间t的时间点下的蓄电元件200的直流电阻 或者交流电阻的电阻值R,由包含累计使用期间t的三次函数的多项式来 表示的关系式。

如此,上述的式1所示的图表是在电池的寿命末期随着累计使用期间 t的经过而电阻值R急剧增加的图表,能够准确地表现在电池的寿命末期 电阻值R加速地增加的电池的劣化状态。另外,所谓电池的寿命末期, 例如是指电池的内部电阻增加至初期的3倍以上的情况。

并且,上述的式1所示的关系式,按照蓄电元件200的每个种类而事 前通过上述那样的实验来导出,并事前被存储至存储部130的关系式数据 131。

另外,上述的式1中的常量A、B、C以及D按照蓄电元件200的每 个种类而计算。

在此,如图5A所示,在累计使用期间为t0~tZ的期间内,由于电阻 值相对于累计使用期间的变化成为向上凸的函数(凹函数)的图表,因此 仅根据该函数的图表是无法获得三次函数的。将该无法获得三次函数的累 计使用期间t0~tZ设为关系式非获取期间。

即,如图5B所示,关系式非获取期间是用累计使用期间对电阻值进 行了一阶微分后的值相对于累计使用期间的变化减少(切线的斜率为负) 的情况下的期间,进一步地具体而言,是用累计使用期间对电阻值进行了 二阶微分后的值成为负值的情况下的期间。

在此,在图5B中,将用累计使用期间对电阻值进行了一阶微分后的 值作为累计使用期间ta~tb的期间内的电阻值的变化量来计算,将横轴的 累计使用期间设为ta~tb的平均值,从而能够简易地生成图表。

此外,在累计使用期间为t0~t1的期间内,在tZ~t1的期间内,由于 电阻值相对于累计使用期间的变化成为向下凸的函数(凸函数)的图表, 因此能够根据该函数的图表来获得三次函数。将该能够获得三次函数的累 计使用期间t0~t1设为关系式获取期间。

即,关系式获取期间是用累计使用期间对电阻值进行了一阶微分后的 值相对于累计使用期间的变化增加(切线的斜率为正)的情况下的期间, 进一步具体而言,是用累计使用期间对电阻值进行了二阶微分后的值成为 正值的情况下的期间。

如以上,关系式获取部110将在该关系式中用累计使用期间对电阻值 进行了二阶微分后的值成为正值的情况下的累计使用期间设为关系式获 取期间,并获取根据直至经过该关系式获取期间的时间点为止的电阻值与 累计使用期间的关系而获得的该关系式。

另外,作为用累计使用期间对电阻值进行了二阶微分后的值,如上述, 也可以采用利用累计使用期间ta~tb的平均值而简易地计算出的、与该二 阶微分近似的值。

在此,在关系式非获取期间内,例如能够通过根号规则、线性规则等 已知的方法来预测相对于累计使用期间的电阻值。为此,也可以是根据该 已知的方法而计算出的关系式存储至存储部130的关系式数据131,关系 式获取部110在关系式非获取期间内获取该关系式。

下面,说明寿命估计装置100对蓄电元件200的剩余寿命进行估计的 处理。

图6以及图7是表示本发明的实施方式所涉及的寿命估计装置100 对蓄电元件200的剩余寿命进行估计的处理的一例的流程图。

首先,如图6所示,关系式获取部110获取与估计剩余寿命的蓄电元 件200的种类相应的、上述的式1所示的关系式(S102)。具体而言,关 系式获取部110参照存储部130中所存储的关系式数据131,来获取与该 蓄电元件200的种类相应的关系式。另外,根据直至经过关系式获取期间 的时间点为止的电阻值与累计使用期间的关系而获得的关系式,预先被写 入关系式数据131。

即,例如在关系式非获取期间内根据根号规则、线性规则等的已知的 方法而计算出的关系式预先被写入关系式数据131,在经过关系式非获取 期间后的关系式获取期间内上述的式1的三次函数预先被写入关系式数 据131。然后,关系式获取部110在关系式非获取期间内获取基于该已知 的方法的关系式,在经过关系式非获取期间后的关系式获取期间内获取上 述的式1的三次函数。

然后,剩余寿命估计部120利用关系式获取部110获取到的关系式来 估计蓄电元件200的剩余寿命(S104)。以下,详细说明剩余寿命估计部 120估计该剩余寿命的处理。图7是表示本发明的实施方式所涉及的剩余 寿命估计部120估计剩余寿命的处理(图6的S104)的一例的流程图。

首先,如图7所示,电阻值获取部121获取第一时间点下的蓄电元件 200的第一电阻值(S202)。具体而言,如图4所示,电阻值获取部121 通过计测第一时间点下的蓄电元件200的第一电阻值R1,由此来获取第 一电阻值R1。另外,电阻值获取部121也可以基于用户的输入等从外部 获取第一电阻值R1。然后,电阻值获取部121将获取到的第一电阻值R1存储至存储部130的蓄电元件数据132。

然后,返回到图7,期间获取部122获取从上述关系式获得的第一电 阻值下的累计使用期间即第一累计使用期间。具体而言,如图4所示,期 间获取部122通过在关系式获取部110获取到的关系式(图4的图表)中 代入电阻值获取部121获取到的第一电阻值R1,由此来计算第一累计使 用期间t1。例如,期间获取部122根据上述的式1所示的关系式,采用利 用了包含三次函数的多项式的函数式R=f(t)来计算第一累计使用期间 t1

另外,期间获取部122从存储于存储部130的蓄电元件数据132之中 读出第一电阻值R1,并利用该关系式来计算第一累计使用期间t1,将第 一累计使用期间t1存储至蓄电元件数据132。

然后,返回到图7,电阻值获取部121获取蓄电元件200的第二时间 点(寿命达到时间点)下的蓄电元件200的第二电阻值(S206)。具体而 言,如图4所示,电阻值获取部121通过来自用户的输入等,作为蓄电元 件200的寿命达到时间点下电阻值而获取用户决定的第二电阻值R2。另 外,所谓蓄电元件200的寿命达到时间点,例如是指蓄电元件200的内部 电阻成为初期的3倍以上的情况。然后,电阻值获取部121将获取到的第 二电阻值R2存储至存储部130的蓄电元件数据132。

另外,第二电阻值R2也可以设为被预先规定且存储于存储部130, 电阻值获取部121从存储部130之中获取第二电阻值R2。此外,电阻值 获取部121也可以按照给定的规则来计算第二电阻值R2,由此来获取第 二电阻值R2

然后,返回到图7,期间获取部122获取从上述关系式获得的第二电 阻值下的累计使用期间即第二累计使用期间(S208)。具体而言,如图4 所示,期间获取部122通过在关系式获取部110获取到的关系式(图4 的图表)中代入电阻值获取部121获取到的第二电阻值R2,由此来计算 第二累计使用期间t2。例如,期间获取部122与第一累计使用期间t1的计 算同样,根据t2=f1(R2)来计算第二累计使用期间t2

另外,期间获取部122从存储于存储部130的蓄电元件数据132之中 读出第二电阻值R2,并利用该关系式来计算第二累计使用期间t2,将第 二累计使用期间t2存储至蓄电元件数据132。另外,也可以是第二累计使 用期间t2事前被存储至蓄电元件数据132,期间获取部122从蓄电元件数 据132之中获取第二累计使用期间t2

然后,返回至图7,剩余寿命计算部123通过从第二累计使用期间之 中减去第一累计使用期间,由此计算从第一时间点起的蓄电元件200的剩 余寿命(S210)。具体而言,如图4所示,剩余寿命计算部123从存储于 存储部130的蓄电元件数据132之中读出第一累计使用期间t1以及第二 累计使用期间t2,来计算剩余寿命T(=t2-t1)。

根据以上,寿命估计装置100对蓄电元件200的剩余寿命进行估计的 处理结束。

下面,说明本发明的实施方式所涉及的寿命估计装置100所发挥的效 果。

具体而言,说明寿命估计装置100能够准确地估计蓄电元件200的剩 余寿命。

以下的具体例中所利用的锂离子二次电池具备正极、负极以及非水电 解质。上述正极是在作为正极集电体的铝箔上形成正极混合剂而成的。上 述正极混合剂包含:正极活性物质、作为粘接剂的聚偏氟乙烯、和作为导 电材料的乙炔黑。上述正极活性物质是由LiNi1/3Co1/3Mn1/3O2表征的层状 构造的锂过渡金属氧化物与尖晶石型锂锰氧化物的混合物。上述负极是在 作为负极集电体的铜箔上形成负极混合剂而成的。上述负极混合剂包含: 作为负极活性物质的石墨质碳材料、和作为粘接剂的聚偏氟乙烯。

另外,上述正极活性物质中的层状构造的锂过渡金属氧化物与尖晶石 型锂锰氧化物的混合比率并不特别限定,以任何比率来混合均可获得同样 的结果。

此外,在45℃、1C循环试验中,充电设为45℃、电流1CmA(=650mA)、 电压4.1V、充电时间3小时的恒流恒压充电,放电设为45℃、电流1CmA (=650mA)、终止电压2.75V的恒流放电。另外,在充电与放电之间以 及放电与充电之间分别设置了10分钟的休止时间。休止时间将电池设为 开路状态。即,将充电、休止、放电、休止这4个过程设为1个循环。

此外,在容量确认试验时,充电设为25℃、电流1CmA(=650mA)、 电压4.1V、充电时间3小时的恒流恒压充电,放电设为25℃、电流1CmA (=650mA)、终止电压2.75V的恒流放电。另外,在充电与放电之间以 及放电与充电之间分别设置了10分钟的休止时间。

图8A~图11是用于说明本发明的实施方式所涉及的寿命估计装置 100所发挥的效果的图。

首先,对图8A~图9进行说明。图8A~图9是说明电阻值R为直 流电阻的情况下的寿命估计装置100所发挥的效果的图。具体而言,图 8A是利用直流电阻与循环数的图表来表示本发明的实施方式所涉及的寿 命估计装置100所发挥的效果的图。此外,图8B是表示本发明的实施方 式所涉及的关系式获取部110所获取的关系式中的关系式获取期间的图。 此外,图9是通过与比较例的比较来表示本发明的实施方式所涉及的寿命 估计装置100所发挥的效果的图。

如图8A所示,关于对象的电池,实施45℃、1C循环试验,计算出 上述的式1所示的关系式。具体而言,根据0循环(该图的t0)~700循 环(该图的t1)的直流电阻的电阻值R的变迁(R0~R1),计算出由包含 三次函数的多项式所表示的关系式R=f(t)。

即,如图8B所示,在累计使用期间t1(700循环)处,用累计使用 期间对电阻值进行了二阶微分后的值成为正值(该图的切线的斜率为正)。 因而,累计使用期间t1(700循环)为关系式获取期间,根据直至经过该 关系式获取期间的时间点(t0~t1∶0循环~700循环)的电阻值与累计使用 期间的关系,计算出该关系式。

然后,其结果,如图9所示,获得了关系式R=4.46×10-8×t3-6.95×10-5×t2+0.119×t+118.8。

在此,在t1=700循环的情况下,由于R1=184.1mOhm,因此将第一时 间点下的电池的第一电阻值设为R1=184.1mOhm,将第一累计使用期间设 为t1=700循环。此外,将第二时间点(寿命达到时间点)下的电池的第 二电阻值设为R2=424.4mOhm,通过t2=f1(R2)来计算第二累计使用期 间t2。其结果,计算出第二累计使用期间t2=1970循环。

根据这些内容,计算出剩余寿命T为T=t2-t1=1270循环。在此,由于 实测值为1300循环,因此利用由包含三次函数的多项式所表示的关系式 R=f(t)而计算出的剩余寿命T与实测值良好地一致。

下面,作为比较例,实施了以往采用的方法下的剩余寿命预测。具体 而言,基于上述的0循环~700循环的电阻值R的结果,估计出电阻值R 与循环数的关系分别为(1)线性规则、(2)根号规则、(3)1.52次规则, 求出预测式。各个预测式如下。

(1)线性规则

R=0.0962×t+117.9

(2)根号规则

R=3.13×t1/2+102.7

(3)1.52次规则

R=3.85×10-3×t1.52+121.5

并且,与上述的包含三次函数的多项式同样,设t1=700循环,将达 到R2=424.4mOhm时设为寿命,来计算t2,从而计算出剩余寿命T=t2-t1。 该剩余寿命T的计算结果在(1)线性规则、(2)根号规则、(3)1.52次 规则中分别为(1)2486循环、(2)9864循环、(3)963循环。

由此,关于这些剩余寿命T与作为实测值的1300循环之差,在(1) 线性规则、(2)根号规则、(3)1.52次规则中分别为(1)+1186循环、 (2)+8564循环、(3)-337循环。如此,上述实施方式所涉及的寿命估 计装置100与以往采用的方法相比,能够以非常高的精度来估计剩余寿 命。

下面,对图10A~图11进行说明。图10A~图11是说明电阻值R 为交流电阻的情况下的寿命估计装置100所发挥的效果的图。具体而言, 图10A是利用交流电阻与循环数的图表来表示本发明的实施方式所涉及 的寿命估计装置100所发挥的效果的图。此外,图10B是表示本发明的 实施方式所涉及的关系式获取部110所获取的关系式中的关系式获取期 间的图。此外,图11是通过与比较例的比较来表示本发明的实施方式所 涉及的寿命估计装置100所发挥的效果的图。

如图10A所示,关于对象的电池,实施45℃、1C循环试验,计算出 上述的式1所示的关系式。具体而言,根据0循环(该图的t0)~700循 环(该图的t1)的直流电阻的电阻值R的变迁(R0~R1),计算出由包含 三次函数的多项式所表示的关系式R=f(t)。

即,如图10B所示,在累计使用期间t1(700循环)处,用累计使用 期间对电阻值进行了二阶微分后的值成为正值(该图的切线的斜率为正)。 因而,累计使用期间t1(700循环)为关系式获取期间,根据直至经过该 关系式获取期间的时间点(t0~t1∶0循环~700循环)的电阻值与累计使用 期间的关系,计算出该关系式。

然后,其结果,如图11所示,获得了关系式R=5.79×10-9×t3+1.41×10-5×t2+0.0436×t+90.4。

在此,在t1=700循环的情况下,由于R1=129.8mOhm,因此将第一时 间点下的电池的第一电阻值设为R1=129.8mOhm,将第一累计使用期间设 为t1=700循环。此外,将第二时间点(寿命达到时间点)下的电池的第 二电阻值设为R2=291.2mOhm,通过t2=f1(R2)来计算第二累计使用期 间t2。其结果,计算出第二累计使用期间t2=2062循环。

根据这些内容,计算出剩余寿命T为T=t2-t1=1362循环。在此,由于 实测值为1300循环,因此利用由包含三次函数的多项式所表示的关系式 R=f(t)而计算出的剩余寿命T与实测值良好地一致。

下面,作为比较例,实施了以往采用的方法下的剩余寿命预测。具体 而言,基于上述的0循环~700循环的电阻值R的结果,估计出电阻值R 与循环数的关系分别为(1)线性规则、(2)根号规则、(3)1.52次规则, 求出预测式。各个预测式如下。

(1)线性规则

R=0.0868×t+70.7

(2)根号规则

R=2.94×t1/2+55.1

(3)1.52次规则

R=2.89×10-3×t1.52+75.7

并且,与上述的包含三次函数的多项式同样,设t1=700循环,将达 到R2=291.2mOhm时设为寿命,来计算t2,从而计算出剩余寿命T=t2-t1。 该剩余寿命T的计算结果在(1)线性规则、(2)根号规则、(3)1.52次 规则中分别为(1)1840循环、(2)5749循环、(3)906循环。

由此,关于这些剩余寿命T与作为实测值的1300循环之差,在(1) 线性规则、(2)根号规则、(3)1.52次规则中分别为(1)+540循环、(2) +4449循环、(3)-394循环。如此,上述实施方式所涉及的寿命估计装置 100与以往采用的方法相比,能够以非常高的精度来估计剩余寿命。

如以上,根据本发明的实施方式所涉及的寿命估计装置100,获取经 过累计使用期间的时间点下的蓄电元件200的直流电阻或者交流电阻的 电阻值由累计使用期间的三次以上的函数来表示的关系式,并利用该关系 式来估计蓄电元件200的剩余寿命。在此,该电阻值随着累计使用期间的 经过而值加速地增加。并且,本申请发明者们经过潜心研究和实验的结果 发现:该电阻值的随时间变化由以累计使用期间为变量的三次以上的函数 来表征。因此,寿命估计装置100通过利用上述关系式,能够准确地表现 该电阻值与累计使用期间的关系,因此能够准确地估计蓄电元件200的剩 余寿命。

此外,寿命估计装置100获取电阻值由包含累计使用期间的三次函数 的多项式来表示的关系式。在此,本申请发明者们经过潜心研究和实验的 结果发现:该电阻值由包含累计使用期间的三次函数的多项式来表示的关 系式高精度地表现了该电阻值的随时间变化。为此,寿命估计装置100 通过利用上述关系式,能够准确地表现该电阻值与累计使用期间的关系, 因此能够准确地估计蓄电元件200的剩余寿命。

此外,在用累计使用期间对电阻值进行了二阶微分后的值成为负值的 情况下,由于电阻值相对于累计使用期间的图表以向上凸的函数(凹函数) 来表现,因此无法预测随着累计使用期间的经过而电阻值加速地增加这样 的状态。即,寿命估计装置100通过获取根据直至经过在用累计使用期间 对电阻值进行了二阶微分后的值成为正值的情况下的累计使用期间的时 间点为止的电阻值与累计使用期间的关系而获得的关系式,从而能够预测 随着累计使用期间的经过而电阻值加速地增加这样的状态。为此,寿命估 计装置100通过利用该关系式从而能够准确地表现该电阻值与累计使用 期间的关系,因此能够准确地估计蓄电元件200的剩余寿命。

此外,寿命估计装置100获取给定的时间点下的第一电阻值和蓄电元 件200的寿命达到时间点下的第二电阻值,并获取从上述关系式获得的第 一电阻值下的第一累计使用期间和第二电阻值下的第二累计使用期间,从 第二累计使用期间之中减去第一累计使用期间,由此计算从给定的时间点 起的蓄电元件200的剩余寿命。这样,寿命估计装置100能够准确地估计 蓄电元件200的剩余寿命。

此外,优选蓄电元件200是包含层状构造的锂过渡金属氧化物来作为 正极活性物质的锂离子二次电池。在此,本申请发明者们经过潜心研究和 实验的结果发现:在蓄电元件200为该锂离子二次电池的情况下,根据上 述关系式能够高精度地表现劣化状态。为此,寿命估计装置100能够准确 地估计该锂离子二次电池的剩余寿命。

另外,寿命估计装置100尤其能够高精度地估计蓄电元件200的寿命 末期中的剩余寿命。由此,能够准确地确认例如电动汽车等移动体用的锂 离子二次电池的更换时期的定时。此外,在蓄电元件200中,根据所估计 的寿命来进行充放电控制,从而能够抑制容量劣化,因此能够采取寿命延 长措施。

(变形例1)

下面,说明本发明的实施方式的变形例1。在上述实施方式中,设为 关系式获取部110参照存储部130中所存储的关系式数据131来获取与该 蓄电元件200的种类相应的关系式。但是,在本变形例中,关系式获取部 对蓄电元件200的电阻值的随时间变化进行解析,由此来计算并获取该关 系式。

图12是表示本发明的实施方式的变形例1所涉及的寿命估计装置 100a的构成的框图。

如该图所示,蓄电系统10a所具备的寿命估计装置100a的关系式获 取部110a具有计算关系式的关系式计算部111。关系式计算部111根据 直至经过关系式获取期间的时间点为止的电阻值与累计使用期间的关系 来计算关系式。在此,所谓关系式获取期间,如图5A以及图5B中说明 过的那样,是指用累计使用期间对电阻值进行了二阶微分后的值成为正值 的情况下的累计使用期间。

即,关系式计算部111如图5A以及图5B所示,根据直至经过在用 累计使用期间对电阻值进行了二阶微分后的值成为正值的情况下的累计 使用期间即关系式获取期间的时间点为止的电阻值与累计使用期间的关 系来计算关系式。并且,关系式获取部110a获取关系式计算部111计算 出的关系式。

另外,关于寿命估计装置100a所具有的其他的构成要素,由于与上 述实施方式中的寿命估计装置100所具有的构成要素具有相同的功能,因 此省略详细说明。

下面,说明寿命估计装置100a的关系式获取部110a获取关系式的处 理。另外,关于其他的处理,由于与上述实施方式中的寿命估计装置100 所进行的处理相同,因此省略详细说明。

图13是表示本发明的实施方式的变形例1所涉及的关系式获取部 110a获取关系式的处理的一例的流程图。具体而言,该图表示图6所示 的寿命估计装置对蓄电元件200的剩余寿命进行估计的处理中的、关系式 获取部获取关系式的处理(图6的S102)。

如图13所示,首先,关系式计算部111获取蓄电元件200的累计使 用期间以及电阻值(S302)。具体而言,关系式计算部111从蓄电元件200 之中不断获取蓄电元件200的累计使用期间以及电阻值。然后,关系式计 算部111将获取到的蓄电元件200的累计使用期间以及电阻值不断写入蓄 电元件数据132。

然后,关系式计算部111利用获取到的蓄电元件200的累计使用期间 以及电阻值,用累计使用期间对该电阻值进行二阶微分(S304)。即,关 系式计算部111从蓄电元件数据132之中读出蓄电元件200的累计使用期 间以及电阻值,用累计使用期间对电阻值进行二阶微分。另外,关于该二 阶微分的计算方法并不特别限定,如图5B所示,关系式计算部111也可 以利用累计使用期间的平均值来简易地进行二阶微分。

然后,关系式计算部111判断用累计使用期间对该电阻值进行了二阶 微分后的值是否为正值(S306)。关系式计算部111在判断为用累计使用 期间对该电阻值进行了二阶微分后的值为正值的情况下(S306中是),将 该累计使用期间作为关系式获取期间来获取(S308)。

然后,关系式计算部111根据直至经过该关系式获取期间的时间点为 止的电阻值与累计使用期间的关系来计算关系式(S310)。即,关系式计 算部111计算关系式,使得该电阻值由累计使用期间的三次以上的函数 (具体而言包含三次函数的多项式)来表示。由此,关系式获取部110a 能够获取关系式。

另外,关系式计算部111在判断为用累计使用期间对该电阻值进行了 二阶微分后的值不是正值的情况下(S306中否),不计算关系式而结束, 重复执行上述处理(S302~S310)。

如此,关系式获取部110a根据直至经过关系式获取期间的时间点为 止的电阻值与累计使用期间的关系来计算关系式,由此获取该关系式。然 后,关系式获取部110a将获取到的关系式写入至关系式数据131,由此 来进行存储。

如以上,根据本发明的实施方式的变形例1所涉及的寿命估计装置 100a,根据直至经过在用累计使用期间对电阻值进行了二阶微分后的值成 为正值的情况下的累计使用期间的时间点为止的电阻值与累计使用期间 的关系来计算关系式。由此,寿命估计装置100a不用事前将该关系式存 储在存储部130中,便能够获取能预测随着累计使用期间的经过而电阻值 加速地增加这样的状态的关系式。因此,寿命估计装置100a通过利用该 关系式而能够准确地表现该电阻值与累计使用期间的关系,因此能够准确 地估计蓄电元件的剩余寿命。

另外,在关系式非获取期间内,例如能够通过根号规则、线性规则等 已知的方法来预测相对于累计使用期间的电阻值。因此,关系式获取部 110a也可以在关系式非获取期间内根据该已知的方法来计算根号规则、 线性规则等的关系式,由此获取该关系式。

(变形例2)

下面,说明本发明的实施方式的变形例2。在上述实施方式中,设为 关系式获取部110获取蓄电元件200的电阻值由包含累计使用期间的三次 函数的多项式来表示的关系式。但是,在本变形例中,关系式获取部110 获取蓄电元件200的电阻值由包含累计使用期间的指数函数的项的式子 来表示的关系式。

即,本变形例中的寿命估计装置100与图2所示的上述实施方式中的 寿命估计装置100具有相同的构成,但写入至关系式数据131并被关系式 获取部110获取的关系式不同。即,本变形例中的寿命估计装置100所具 有的各构成要素与上述实施方式中的寿命估计装置100所具有的各构成 要素除了该关系式不同这一点之外,具有相同的功能,因此该各构成要素 的详细说明将省略。

在此,详细说明关系式获取部110所获取的关系式。

关系式获取部110所获取的关系式,能够通过进行以下实验来获取。 具体而言,在假定被重复使用的使用条件(电流值为规定值)下,根据直 至某劣化状态(例如图4的t0~t1的期间)的直流电阻或交流电阻的电阻 值R的变迁来计算指数相关函数式R=f(t)。

例如,在0、100、200以及300循环后实施直流或交流电阻测量,获 取(电阻值R、累计使用期间t)的数据对。进而,将两者的关系代入到 Ln(R)=a×t+b中,来计算常量a以及b。另外,作为电阻值R的测量方 法,能够利用与上述的图4中说明过的方法相同的测量方法。

如以上,作为上述关系式,如以下的式2所示,获取以累计使用期间 t的指数函数来表征电阻值R的关系式。

R=f(t)=c×exp(a×t)(式2)

在此,a以及c为常量。根据以上,作为关系式获取部110所获取的 关系式,如上述的式2所示,能够获得:直至经过蓄电元件200的使用期 间的累计值即累计使用期间t的时间点为止的蓄电元件200的直流电阻或 者交流电阻的电阻值R,与以在累计使用期间t上乘以给定的常量a后的 值为变量的指数函数成比例的关系式。

如此,上述的式2所示的图表是在电池的寿命末期随着累计使用期间 t的经过而电阻值R急剧增加的图表,能够准确地表现在电池的寿命末期 电阻值R加速地增加的电池的劣化状态。另外,所谓电池的寿命末期, 例如是指电池的内部电阻增加至初期的3倍以上的情况。

并且,上述的式2所示的关系式,按照蓄电元件200的每个种类而事 前通过如上述的实验来导出,事前被存储至存储部130的关系式数据131。

另外,上述的式2中的常量a以及c按照蓄电元件200的每个种类而 计算。

然后,在寿命估计装置100对蓄电元件200的剩余寿命进行估计的处 理中,关系式获取部110获取上述的式2所示的关系式(图6的S102)。 即,关系式获取部110获取蓄电元件200的电阻值与以在累计使用期间上 乘以给定的常量后的值为变量的指数函数成比例的关系式。具体而言,关 系式获取部110参照存储部130中所存储的关系式数据131,来获取与该 蓄电元件200的种类相应的关系式。

另外,关系式获取部110如上述变形例1中的关系式获取部110a那 样,也可以对蓄电元件200的电阻值的随时间变化进行解析,由此来计算 并获取该关系式。即,关系式获取部110计算关系式,使得该电阻值由与 以在该累计使用期间上乘以给定的常量后的值为变量的指数函数成比例 的式子来表示,由此获取该关系式。

另外,在本变形例中,由于不存在上述实施方式那样的关系式非获取 期间,因此关系式获取部110无需在关系式非获取期间内获取不同的关系 式。

此外,剩余寿命估计部120利用关系式获取部110获取到的关系式来 估计蓄电元件200的剩余寿命(图6的S104)。该剩余寿命估计部120对 该剩余寿命进行估计的处理与图7所示的上述实施方式中的处理相同。

下面,说明本变形例所涉及的寿命估计装置100所发挥的效果。具体 而言,说明寿命估计装置100能够准确地估计蓄电元件200的剩余寿命。

以下的具体例中所利用的锂离子二次电池(电池A、电池B)具备正 极、负极以及非水电解质。上述正极是在作为正极集电体的铝箔上形成正 极混合剂而成的。上述正极混合剂包含:正极活性物质、作为粘接剂的聚 偏氟乙烯、和作为导电材料的乙炔黑。上述正极活性物质是由 LiNi1/3Co1/3Mn1/3O2表征的层状构造的锂过渡金属氧化物与尖晶石型锂锰 氧化物的混合物。上述负极是在作为负极集电体的铜箔上形成负极混合剂 而成的。上述负极混合剂包含:作为负极活性物质的石墨质碳材料、和作 为粘接剂的聚偏氟乙烯。另外,电池A和电池B的正极活性物质的粒径 以及相对表面积的值不同。

图14~图17是用于说明本发明的实施方式的变形例2所涉及的寿命 估计装置100所发挥的效果的图。具体而言,图14是说明在蓄电元件200 为电池A且电阻值R为直流电阻的情况下的寿命估计装置100所发挥的 效果的图,图15是说明在蓄电元件200为电池A且电阻值R为交流电阻 的情况下的寿命估计装置100所发挥的效果的图。此外,图16是说明在 蓄电元件200为电池B且电阻值R为直流电阻的情况下的寿命估计装置 100所发挥的效果的图,图17是说明在蓄电元件200为电池B且电阻值 R为交流电阻的情况下的寿命估计装置100所发挥的效果的图。

如图14所示,关于电池A,实施45℃、1C循环试验,并计算出上 述的式2所示的关系式。具体而言,根据0循环(该图的t0)~300循环 (该图的t1)的直流电阻的电阻值R的变迁而计算出指数规则的关系式 R=f(t)。

其结果,获得关系式R=121.8×exp(6.467×10-4×t)。

在此,在t1=300循环的情况下,由于R1=149.7mOhm,因此将第一时 间点下的电池A的第一电阻值设为R1=149.7mOhm,将第一累计使用期 间设为t1=300循环。此外,将第二时间点(寿命达到时间点)下的电池 A的第二电阻值设为R2=424.4mOhm,通过t2=f1(R2)来计算第二累计 使用期间t2。其结果,计算出第二累计使用期间t2=1930循环。

根据这些内容,计算出剩余寿命T为T=t2-t1=1630循环。在此,由于 实测值为1700循环,因此利用指数规则的关系式R=f(t)而计算出的剩 余寿命T与实测值良好地一致。

下面,作为比较例,实施了以往采用的方法下的剩余寿命预测。具体 而言,基于上述的0循环~300循环的电阻值R的结果,估计出电阻值R 与循环数的关系分别为(1)线性规则、(2)根号规则、(3)1.52次规则, 求出预测式。各个预测式如下。

(1)线性规则

R=0.121×t+115.2

(2)根号规则

R=2.19×t1/2+110.3

(3)1.52次规则

R=5.77×10-3×t1.52+118.5

并且,与上述的指数规则同样,设t1=300循环,将达到R2=424.4mOhm 时设为寿命,来计算t2,从而计算出剩余寿命T=t2-t1。该剩余寿命T的计 算结果在(1)线性规则、(2)根号规则、(3)1.52次规则中分别为(1) 2243循环、(2)20160循环、(3)982循环。

由此,如图14(b)所示,关于这些剩余寿命T与作为实测值的1700 循环之差,在(1)线性规则、(2)根号规则、(3)1.52次规则中分别为 (1)+543循环、(2)+18460循环、(3)-718循环。如此,上述变形例2 所涉及的寿命估计装置100与以往采用的方法相比,能够以非常高的精度 来估计剩余寿命。

然后,如图15所示,关于电池A,实施45℃、1C循环试验,并根 据0循环(该图的t0)~300循环(该图的t1)的交流电阻的电阻值R的 变迁而计算出指数规则的关系式R=f(t)。其结果,获得关系式R=83.9×exp (6.410×10-4×t)。

在此,在t1=300循环的情况下,由于R1=104.9mOhm,因此将第一时 间点下的电池A的第一电阻值设为R1=104.9mOhm,将第一累计使用期 间设为t1=300循环。此外,将第二时间点(寿命达到时间点)下的电池 A的第二电阻值设为R2=291.2mOhm,通过t2=f1(R2)来计算第二累计 使用期间t2。其结果,计算出第二累计使用期间t2=1941循环。

根据这些内容,计算出剩余寿命T为T=t2-t1=1641循环。在此,由于 实测值为1700循环,因此利用指数规则的关系式R=f(t)而计算出的剩 余寿命T与实测值良好地一致。

下面,作为比较例,针对上述的(1)线性规则、(2)根号规则、(3) 1.52次规则分别求出预测式。各个预测式如下。

(1)线性规则

R=0.147×t+63.9

(2)根号规则

R=2.77×t1/2+56.9

(3)1.52次规则

R=6.87×10-3×t1.52+68.1

并且,与上述的指数规则同样,设t1=300循环,将达到R2=291.2mOhm 时设为寿命,来计算t2,从而计算出剩余寿命T=t2-t1。该剩余寿命T的计 算结果在(1)线性规则、(2)根号规则、(3)1.52次规则中分别为(1) 1246循环、(2)6834循环、(3)629循环,与作为实测值的1700循环之 差分别为(1)-454循环、(2)+5134循环、(3)-1071循环。如此,上述 的变形例2所涉及的寿命估计装置100与以往采用的方法相比,能够以非 常高的精度来估计剩余寿命。

然后,如图16所示,关于电池B,实施45℃、1C循环试验,并根 据0循环(该图的t0)~300循环(该图的t1)的直流电阻的电阻值R的 变迁而计算出指数规则的关系式R=f(t)。其结果,获得关系式 R=101.7×exp(2.875×10-4×t)。

在此,在t1=300循环的情况下,由于R1=112.1mOhm,因此将第一时 间点下的电池B的第一电阻值设为R1=112.1mOhm,将第一累计使用期间 设为t1=300循环。此外,将第二时间点(寿命达到时间点)下的电池B 的第二电阻值设为R2=180mOhm,通过t2=f1(R2)来计算第二累计使用 期间t2。其结果,计算出第二累计使用期间t2=1985循环。

根据这些内容,计算出剩余寿命T为T=t2-t1=1685循环。在此,由于 实测值为1700循环,因此利用指数规则的关系式R=f(t)而计算出的剩 余寿命T与实测值良好地一致。

下面,作为比较例,针对上述的(1)线性规则、(2)根号规则、(3) 1.52次规则分别求出预测式。各个预测式如下。

(1)线性规则

R=0.047×t+100.0

(2)根号规则

R=0.902×t1/2+97.5

(3)1.52次规则

R=2.11×10-3×t1.52+101.4

并且,与上述的指数规则同样,设t1=300循环,将达到R2=180mOhm 时设为寿命,来计算t2,从而计算出剩余寿命T=t2-t1。该剩余寿命T的计 算结果在(1)线性规则、(2)根号规则、(3)1.52次规则中分别为(1) 1402循环、(2)8064循环、(3)717循环,与作为实测值的1700循环之 差分别为(1)-298循环、(2)+6364循环、(3)-983循环。如此,上述 的变形例2所涉及的寿命估计装置100与以往采用的方法相比,能够以非 常高的精度来估计剩余寿命。

然后,如图17所示,关于电池B,实施45℃、1C循环试验,并根 据0循环(该图的t0)~300循环(该图的t1)的交流电阻的电阻值R的 变迁而计算出指数规则的关系式R=f(t)。其结果,获得关系式R=59.0×exp (2811×10-4×t)。

在此,在t1=300循环的情况下,由于R1=65.5mOhm,因此将第一时 间点下的电池B的第一电阻值设为R1=65.5mOhm,将第一累计使用期间 设为t1=300循环。此外,将第二时间点(寿命达到时间点)下的电池B 的第二电阻值设为R2=100.4mOhm,通过t2=f1(R2)来计算第二累计使 用期间t2。其结果,计算出第二累计使用期间t2=1891循环。

根据这些内容,计算出剩余寿命T为T=t2-t1=1591循环。在此,由于 实测值为1700循环,因此利用指数规则的关系式R=f(t)而计算出的剩 余寿命T与实测值良好地一致。

下面,作为比较例,针对上述的(1)线性规则、(2)根号规则、(3) 1.52次规则分别求出预测式。各个预测式如下。

(1)线性规则

R=0.05×t+52.2

(2)根号规则

R=0.811×t1/2+52.2

(3)1.52次规则

R=2.27×10-3×t1.52+53.8

并且,与上述的指数规则同样,设t1=300循环,将达到R2=100.4mOhm 时设为寿命,来计算t2,从而计算出剩余寿命T=t2-t1。该剩余寿命T的计 算结果在(1)线性规则、(2)根号规则、(3)1.52次规则中分别为(1) 664循环、(2)3232循环、(3)387循环,与作为实测值的1700循环之 差分别为(1)-1036循环、(2)+1532循环、(3)-1313循环。如此,上 述的变形例2所涉及的寿命估计装置100与以往采用的方法相比,能够以 非常高的精度来估计剩余寿命。

如以上,根据本发明的实施方式的变形例2所涉及的寿命估计装置 100,获取电阻值与以在累计使用期间上乘以给定的常量后的值为变量的 指数函数成比例的关系式。在此,本申请发明者们经过潜心研究和实验的 结果发现:该电阻值与以在累计使用期间上乘以给定的常量后的值为变量 的指数函数成比例的关系式高精度地表现了该电阻值的随时间变化。因 此,寿命估计装置100通过利用上述关系式,能够准确地表现该电阻值与 累计使用期间的关系,因此能够准确地估计蓄电元件200的剩余寿命。

另外,关系式获取部110也可与上述实施方式同样,将用累计使用期 间对电阻值进行了二阶微分后的值成为正值的情况下的累计使用期间规 定为关系式获取期间,并获取根据直至经过该关系式获取期间的时间点为 止的电阻值与累计使用期间的关系而获得的关系式。此外,也可与上述变 形例1同样,关系式获取部110根据直至经过该关系式获取期间的时间点 为止的电阻值与累计使用期间的关系来计算关系式,由此获取关系式。

(变形例3)

下面,说明本发明的实施方式的变形例3。在上述实施方式中,设为 剩余寿命估计部120对关系式获取部110获取到的关系式不进行变更地加 以利用,来估计蓄电元件200的剩余寿命。但是,在本变形例中,剩余寿 命估计部对该关系式进行修正来估计该剩余寿命。

图18是表示本发明的实施方式的变形例3所涉及的寿命估计装置 100b的构成的框图。

如该图所示,蓄电系统10b所具备的寿命估计装置100b的剩余寿命 估计部120b具有对关系式获取部110获取到的关系式进行修正的关系式 修正部124。并且,剩余寿命估计部120b利用关系式修正部124进行了 修正的修正后的关系式来估计剩余寿命。

具体而言,关系式修正部124在利用关系式获取部110获取到的关系 式而计算出的蓄电元件200的累计使用期间下的电阻值与电阻值获取部 121获取到的电阻值之间的差分超过了给定的值的情况下,重新计算关系 式。

例如,关系式修正部124在汽车等中的实际使用中获取相当于累计使 用期间和电阻值的数据对,并判断该差分是否超过了该给定的值。并且, 关系式修正部124在判断为该差分超过了该给定的值的情况下,根据直至 经过该差分超过了该给定的值时的累计使用期间的时间点为止的电阻值 与累计使用期间的关系,来重新计算关系式。

具体而言,关系式修正部124计算关系式,使得该电阻值由累计使用 期间的三次以上的函数(具体而言包含三次函数的多项式)来表示。然后, 关系式修正部124将计算出的关系式写入至关系式数据131,由此对关系 式进行修正。

如以上,根据本发明的实施方式的变形例3所涉及的寿命估计装置 100b,对关系式进行修正来提高该关系式的精度,因此能够确地估计剩余 寿命。

(变形例4)

下面,说明本发明的实施方式的变形例4。在上述实施方式中,设为 寿命估计装置100具备关系式获取部110、剩余寿命估计部120以及存储 部130,且剩余寿命估计部120具备电阻值获取部121、期间获取部122 以及剩余寿命计算部123。但是,在本变形例中,寿命估计装置仅具备关 系式获取部以及剩余寿命估计部。

图19是表示本发明的实施方式的变形例4所涉及的寿命估计装置 100c的构成的框图。即,该图是表示寿命估计装置的最小构成的框图。

如该图所示,蓄电系统10c所具备的寿命估计装置100c包含与上述 实施方式具有相同功能的关系式获取部110以及剩余寿命估计部120c。 并且,寿命估计装置100c与外部的存储部130交换信息,由此来估计剩 余寿命。

另外,剩余寿命估计部120c只要能够利用关系式获取部110获取到 的关系式来估计剩余寿命即可,并不限于如上述实施方式那样具备电阻值 获取部121、期间获取部122以及剩余寿命计算部123。即,寿命估计装 置至少具备关系式获取部以及剩余寿命估计部即可。

如以上,根据本发明的实施方式的变形例4所涉及的寿命估计装置 100c,也能够发挥与上述实施方式相同的效果。

以上,虽然说明了本发明的实施方式及其变形例所涉及的寿命估计装 置以及蓄电系统,但本发明并不限定于本实施方式及其变形例。即,应当 认为本次公开的实施方式及其变形例在所有方面仅为例示,并非限制性。 本发明的范围通过权利要求的范围来表示而非上述的说明,意在包含与权 利要求的范围均等的意思以及范围内的所有变更。

例如,在上述实施方式及其变形例1、3、4中,设为关系式获取部获 取蓄电元件200的电阻值由包含累计使用期间的三次函数的多项式来表 示的关系式。但是,关系式获取部也可以获取该电阻值由累计使用期间的 四次以上的函数且不包含三次函数的多项式来表示的关系式。此外,关系 式获取部还可以获取只有1项而非多项式的关系式。即,关系式获取部只 要获取该电阻值由累计使用期间的三次以上的函数来表示的关系式即可。 由此,也能与上述实施方式及其变形例同样地设定能表现随着累计使用期 间的经过而电阻值加速地增加的状态的关系式。

此外,本发明所涉及的寿命估计装置所具备的处理部,典型地被实现 为作为集成电路的LSI(LargeScaleIntegration;大规模集成电路)。即, 例如,如图20所示,本发明实现为具备关系式获取部110和剩余寿命估 计部120的集成电路101。图20是表示由集成电路来实现本发明的实施 方式所涉及的寿命估计装置的构成的框图。

另外,集成电路101所具备的各处理部既可以单独地被单芯片化,也 可以按照包含一部分或者全部的方式进行单芯片化。

在此,虽然设为LSI,但根据集成度的不同,也有时被称作IC、系统 LSI、超级LSI、超LSI。

此外,集成电路化的方法并不限于LSI,也可以由专用电路或者通用 处理器来实现。还可以利用在LSI制造后能够编程的FPGA(Field ProgrammableGateArray;现场可编程门阵列)、能够重构LSI内部的电 路单元的连接、设定的可重构处理器。

进而,如果由于半导体技术的进步或者衍生出的其他技术而出现了置 换LSI的集成电路化的技术,则当然也可以利用该技术来进行功能块的集 成化。

也可以实现生物体技术的应用等。

此外,本发明不仅能够作为这种寿命估计装置来实现,还能够作为以 寿命估计装置所进行的特征处理为步骤的寿命估计方法来实现。

此外,本发明还可以作为使计算机执行寿命估计方法中所包含的特征 处理的程序来实现,或者作为记录有该程序的计算机可读取的CD-ROM 等非暂时性记录介质来实现。并且,这种程序能够经由CD-ROM等记录 介质以及因特网等传输介质来流通是不言而喻的。

此外,任意组合上述实施方式以及上述变形例而构筑的方式也包含在 本发明的范围内。例如,可以对上述变形例1实施变形例3所涉及的变形, 或者对上述变形例2实施变形例3、4所涉及的变形。

产业上的可利用性

本发明能够应用于能准确地估计蓄电元件的剩余寿命的寿命估计装 置等。

符号说明

10、10a、10b、10c蓄电系统

100、100a、100b、100c寿命估计装置

101集成电路

110、110a关系式获取部

111关系式计算部

120、120b、120c剩余寿命估计部

121电阻值获取部

122期间获取部

123剩余寿命计算部

124关系式修正部

130存储部

131关系式数据

132蓄电元件数据

200蓄电元件

300收纳壳体

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号