首页> 中国专利> 一种微纳分级孔结构碳酸钙中空微球的制备方法

一种微纳分级孔结构碳酸钙中空微球的制备方法

摘要

本发明公开了一种微纳分级孔结构碳酸钙中空微球的制备方法,该方法是在匀速搅拌条件下,先将氯化钙/聚乙烯吡咯烷酮(CaCl2/PVP)混合溶液滴加到十二烷基磺酸钠(SDSN)溶液中,再向所述SDSN溶液中滴加碳酸钠/聚乙烯吡咯烷酮(Na2CO3/PVP)混合溶液进行反应后,静置陈化;所得产物经洗涤、干燥后,置于高温下煅烧,即得;该方法对微纳分级孔结构碳酸钙中空微球形貌可控,可以获得大小分布均匀,同时具有微米级和纳米级孔洞的碳酸钙中空微球,且方法简单、高效,反应条件温和,满足工业化生产。

著录项

  • 公开/公告号CN105502463A

    专利类型发明专利

  • 公开/公告日2016-04-20

    原文格式PDF

  • 申请/专利权人 中南大学;

    申请/专利号CN201510992829.9

  • 发明设计人 邹俭鹏;杨洪志;肖平;潘一峰;

    申请日2015-12-28

  • 分类号C01F11/18(20060101);

  • 代理机构43114 长沙市融智专利事务所;

  • 代理人魏娟

  • 地址 410083 湖南省长沙市岳麓区麓山南路932号

  • 入库时间 2023-12-18 15:29:11

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-10-25

    授权

    授权

  • 2016-05-18

    实质审查的生效 IPC(主分类):C01F11/18 申请日:20151228

    实质审查的生效

  • 2016-04-20

    公开

    公开

说明书

技术领域

本发明涉及一种微纳分级孔结构碳酸钙中空微球的制备方法,属于无机纳米功能材料制备技术领域。

背景技术

微纳分级孔结构材料作为一种功能材料,因其具有特殊的光、电、磁、催化和力学性能,一直是材料科学的前沿研究领域之一。微纳分级孔结构材料是指在其材料内部形成微米级的空腔而在其材料表面形成纳米孔的一种具有分级孔的核壳结构材料,其分级结构通常由纳米粒子相互组装排列构成。微纳分级孔结构材料具有密度低,比表面积大,稳定性好,表面可渗透性好等特性,在催化、污染物吸附、微纳米器件、新能源材料、生物医学及气敏材料等领域有着广阔的应用前景。

碳酸钙作为一种用途广泛的化工产品,因原料低廉易得、生产工艺简单、性能稳定等特点,使其在橡胶、塑料、造纸、涂料、纺织、食品、牙膏等领域得到广泛应用。而具有微纳分级孔结构的碳酸钙中空微球由于其兼具微米孔及纳米孔的特性,使其具有比表面积高,孔体积大和孔径可调,特殊的形貌结构以及优良的化学稳定性和热稳定性等性质,使得碳酸钙的应用范围进一步扩大,在制药学、生物学及吸附过滤等方面具有潜在的应用前景,已成为国内外研究的热点。

目前,多孔碳酸钙微球的制备主要是利用溶液合成方法,借助球形模板剂及各种添加剂的调控作用,制备出形貌和结构有效可控的碳酸钙粒子。但添加剂与模板剂多为表面活性剂与高聚物,在实验中存在一些不足,如添加剂对实验条件要求比较苛刻,使得材料制备工艺复杂;模板剂与无机材料壳层间作用力弱,在包覆过程中需要对材料表面进行改性;且部分表面活性剂相容性较差。因此,选择合适的模板剂是实现碳酸钙简易制备及形貌可控的必要前提。

发明内容

针对现有技术中多孔碳酸钙微球的制备方法存在的缺陷,本发明的目的是在于提供一种通过PVP和SDSN复合模板剂对微纳分级孔结构碳酸钙中空微球的形貌调控,可以获得大小分布均匀,且同时具有微米级和纳米级孔洞的碳酸钙中空微球的方法,该方法简单、高效,反应条件温和,满足工业化生产。

为了实现上述技术目的,本发明提供了一种微纳分级孔结构碳酸钙中空微球的制备方法,该制备方法是在匀速搅拌及40~60℃温度条件下,先将CaCl2/PVP混合溶液滴加到SDSN溶液中,再向所述SDSN溶液中滴加Na2CO3/PVP混合溶液进行反应后,静置陈化;所得产物经洗涤、干燥后,置于350~450℃温度下煅烧,即得。

本发明的技术方案以CaCl2和Na2CO3作为反应原料,采用聚乙烯吡咯烷酮(PVP)和十二烷基磺酸钠(SDSN)组合使用作为模板剂,通过化学沉淀反应得到碳酸钙晶体,碳酸钙晶体以自组装方式获得碳酸钙中空微球前躯体,PVP和SDSN与碳酸钙晶体之间的相容性好,作用力强,能很好地控制碳酸钙晶体的生长,最终得到形貌较好的具有微纳分级孔结构的碳酸钙中空微球;克服了现有的模板剂与无机材料壳层间因作用力弱及相容性差等不足,而导致的碳酸钙晶体形貌难以控制的缺陷。

优选的方案,将CaCl2/PVP混合溶液滴加到SDSN溶液中的时间为0.5~1小时,滴加完成后,搅拌的时间为1~2小时。

优选的方案,将Na2CO3/PVP混合溶液滴加到SDSN溶液中的时间为0.5~2小时,滴加完成后,搅拌反应的时间为1~2小时。

优选的方案,静置陈化时间为12~24小时;静置陈化过程有利于碳酸钙晶体的生长。

优选的方案,煅烧时间为4~6小时。

优选的方案,CaCl2/PVP混合溶液中CaCl2的浓度为0.05~0.15mol/L,PVP的浓度为2~4g/L。

优选的方案,Na2CO3/PVP混合溶液中Na2CO3的浓度为0.05~0.15mol/L,PVP的浓度为2~4g/L。

优选的方案,SDSN溶液浓度为20~40g/L。

优选的方案,CaCl2/PVP混合溶液和SDSN溶液的总体积与Na2CO3/PVP混合溶液的体积比为1:1,且Na2CO3的加入量相对CaCl2过量。

较优选的方案,微纳分级孔结构碳酸钙中空微球由碳酸钙纳米颗粒构成;所述的中空微球结构外径为4~6微米,壳层厚度为100~400纳米,且表面具有孔径为10~80纳米的纳米孔。

进一步优选的方案,碳酸钙纳米颗粒直径为20~100纳米。

进一步优选的方案,纳米碳酸钙颗粒的晶相组成为方解石晶型和球霰石晶型共混体。

与现有技术相比,本发明的技术方案带来的有益效果:

1、本发明的技术方案可以对微纳分级孔结构碳酸钙中空微球的形貌可控,可以获得大小分布均匀,且同时具有微米级和纳米级孔洞的碳酸钙中空微球。

2、本发明的技术方案采用了特殊的PVP和SDSN组合型模板剂,这种复合模板剂对与碳酸钙晶体之间的相容性好,作用力强,能很好地控制碳酸钙晶体的生长,可以实现对碳酸钙中空微球形貌的调控。

3、本发明的技术方案获得的微纳分级孔结构碳酸钙中空微球中纳米碳酸钙颗粒的晶相组成为方解石晶型和球霰石晶型共混体,PVP的存在使得亚稳态球霰石晶型得以稳定存在。

4、本发明的技术方案获得的微纳分级孔结构碳酸钙中空微球外径为4~6微米,内部具有孔径4微米左右的微米孔,具有较大的孔体积及良好的生物相容性,在药物装载及缓释药物方面具有研究价值,可作为药物缓释载体;

5、本发明的技术方案获得的微纳分级孔结构碳酸钙中空微球同时具有孔径为4微米左右的微米孔和孔径为10~80纳米的纳米孔,且纳米颗粒直径为20~100纳米,拥有优异的结构特征及丰富的活性位点,在光催化及污染物吸附水处理等领域有着广阔的应用前景。

6、本发明的微纳分级孔结构碳酸钙中空微球制备工艺简单,成本低,工艺条件温和,满足工业化生产。

附图说明

【图1】为实施例1制备的微纳分级孔结构碳酸钙中空微球的扫描电镜(SEM)图;a为低倍率,b为高倍率;

【图2】为实施例1制备的微纳分级孔结构碳酸钙中空微球的透射电镜(TEM)图;a为碳酸钙中空微球的形貌,b为纳米碳酸钙在球形壳壁上的形貌,c为碳酸钙中空微球的电子衍射图谱;

【图3】是实施例1制备的微纳分级孔结构碳酸钙中空微球的X射线单电子衍射(XRD)图;

【图4】是本发明的制备工艺流程示意图;

【图5】是实施例制备机理示意图。

具体实施方式

下面结合附图对本发明进一步说明;以下实施旨在进一步说明本发明内容,而不是限制本发明权利要求的保护范围。

实施例1

准确称取1.11gCaCl2并将其溶解在装有100mL蒸馏水的烧杯中,搅拌均匀配制成CaCl2溶液;准确称取2.12gNa2CO3并将其溶解在装有200mL蒸馏水的烧杯中,搅拌均匀配制成Na2CO3溶液;准确称取2.72gSDSN并将其溶解在装有100mL蒸馏水的烧杯中,搅拌均匀配制成SDSN溶液;分别称取0.4gPVP分别与100mLCaCl2溶液、200mLNa2CO3溶液混合,并搅拌均匀。在反应温度为50℃和磁力搅拌的条件下将100mL的CaCl2/PVP混合溶液逐滴滴入到SDSN溶液中,并持续搅拌30min后,将200mLNa2CO3/PVP溶液,逐滴滴加到CaCl2/PVP/SDSN混合溶液中,控制滴加速度,使滴加时间为1h,反应结束后,再持续搅拌4h,然后将反应产物静置12h后过滤;将沉淀用蒸馏水和无水乙醇分别洗涤3次,然后将沉淀放入电热鼓风干燥箱中,在80℃的条件下干燥12h,然后放入马弗炉中350℃煅烧2h即得微纳分级孔结构碳酸钙中空微球。该碳酸钙微球直径在5μm左右,壳壁由直径在60nm左右的碳酸钙颗粒组成,壳的厚度约为250nm左右,且内部空腔微米孔径约为4.5μm左右,微球壳壁孔径在20nm左右,碳酸钙微球组成为方解石和球霰石的共混体。

实施例2

准确称取1.11gCaCl2并将其溶解在装有100mL蒸馏水的烧杯中,搅拌均匀配制成CaCl2溶液;准确称取2.12gNa2CO3并将其溶解在装有200mL蒸馏水的烧杯中,搅拌均匀配制成Na2CO3溶液;准确称取2.72gSDSN并将其溶解在装有100mL蒸馏水的烧杯中,搅拌均匀配制成SDSN溶液;称取0.8gPVP分别与100mLCaCl2溶液、200mLNa2CO3溶液混合,并搅拌均匀。在反应温度为50℃和磁力搅拌的条件下将100mL的CaCl2/PVP混合溶液逐滴滴入到SDSN溶液中,并持续搅拌30min后,将200mLNa2CO3/PVP溶液,逐滴滴加到CaCl2/PVP/SDSN混合溶液中,控制滴加速度,使滴加时间为0.5h;反应结束后,再持续搅拌2h,然后将反应产物静置24h后过滤;将沉淀用蒸馏水和无水乙醇分别洗涤3次,然后将沉淀放入电热鼓风干燥箱中,在70℃的条件下干燥18h,然后放入马弗炉中350℃煅烧3h即得微纳分级结构碳酸钙中空微球。该碳酸钙微球直径在4μm左右,壳壁由直径在50nm左右的碳酸钙颗粒组成,壳的厚度约为200nm左右,且内部空腔微米孔径约为3.6μm左右,微球壳壁孔径在20nm左右,碳酸钙微球组成为方解石和球霰石的共混体。

实施例3

准确称取1.11gCaCl2并将其溶解在装有100mL蒸馏水的烧杯中,搅拌均匀配制成CaCl2溶液;准确称取2.12gNa2CO3并将其溶解在装有200mL蒸馏水的烧杯中,搅拌均匀配制成Na2CO3溶液;准确称取3.27gSDSN并将其溶解在装有100mL蒸馏水的烧杯中,搅拌均匀配制成SDSN溶液;称取0.4gPVP分别与100mLCaCl2溶液、200mLNa2CO3溶液混合,并搅拌均匀。在反应温度为50℃和磁力搅拌的条件下将100mL的CaCl2/PVP混合溶液逐滴滴入到SDSN溶液中,并持续搅拌30min后,将200mLNa2CO3/PVP溶液,逐滴滴加到CaCl2/PVP/SDSN混合溶液中,控制滴加速度,使滴加时间为1h,反应结束后,再持续搅拌3h,然后将反应产物静置24h后过滤;将沉淀用蒸馏水和无水乙醇分别洗涤3次,然后将沉淀放入电热鼓风干燥箱中,在90℃的条件下干燥12h,然后放入马弗炉中350℃煅烧4h即得微纳分级结构碳酸钙中空微球。该碳酸钙微球直径在5μm左右,壳壁由直径在50nm左右的碳酸钙颗粒组成,壳的厚度约为300nm左右,且内部空腔微米孔径约为4.4μm左右,微球壳壁孔径在20nm左右,碳酸钙微球组成为方解石和球霰石的共混体。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号