首页> 中国专利> 线性电机驱动装置及线性电机驱动方法

线性电机驱动装置及线性电机驱动方法

摘要

本发明提供一种线性电机驱动装置及线性电机驱动方法,包括依次连接的振幅及温度检测单元、增益控制器、线圈电阻探测器及放大器;所述振幅及温度检测单元接收电机驱动输入信号及所述放大器输出的反馈驱动信号,并根据所述电机驱动输入信号及所述反馈驱动信号输出对应的预估电机振幅及实时温度;所述放大器根据通过调整放大倍数并依据所述放大倍数对所述电机驱动输入信号进行放大并输出反馈驱动信号以驱动所述电机。采用本发明能根据当前预估振幅与最大振幅调整输出的驱动信号的大小,并且在温度过高时对应修正放大器的放大系数延长电机的使用寿命。

著录项

  • 公开/公告号CN105471355A

    专利类型发明专利

  • 公开/公告日2016-04-06

    原文格式PDF

  • 申请/专利权人 瑞声声学科技(深圳)有限公司;

    申请/专利号CN201510641037.7

  • 发明设计人 葛欢;叶利剑;周荣冠;

    申请日2015-09-30

  • 分类号H02P25/06;

  • 代理机构

  • 代理人

  • 地址 518057 广东省深圳市南山区高新区南区粤兴三道6号南京大学深圳产学研大楼A座

  • 入库时间 2023-12-18 15:29:11

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-04-10

    授权

    授权

  • 2016-05-04

    实质审查的生效 IPC(主分类):H02P25/06 申请日:20150930

    实质审查的生效

  • 2016-04-06

    公开

    公开

说明书

【技术领域】

本发明主要涉及线性电机驱动领域,尤其涉及一种可用于移动终端上的线性电机的驱动装置及线性电机驱动方法。

【背景技术】

振动反馈,作为手机,平板电脑等移动设备附带的一种反馈形式,其应用范围已从最初的仅提供最基本的来电提醒等功能,逐步扩展到提供与应用程序及应用场景相关联的触觉反馈等功能。而电机,是移动设备中提供振动反馈的基本原件,通常包括旋转电机,压电电机以及线性电机等。其中线性电机(LRA,LinearResonantActuator)以其体积小,寿命长,功耗低,响应时间快等优点,在提供与应用程序及场景相关的触觉反馈功能方面有着绝对的优势。

线性电机的基本工作原理类似于扬声器,是利用通电线圈在磁场中受到的安培力来驱动机械结构进行振动。线性电机通常被设计为在谐振频率处有较高的Q值,其频响曲线在偏离谐振频率处迅速衰减,因此线性电机多工作在谐振频率附近。同时,在单谐振频率线性电机的基础上,通过适当的结构设计,线性电机可拥有两个甚至两个以上的谐振频率。

传统的驱动方式下,线性电机存在两大损毁因素,包括由于振动幅度过大造成的机械损坏以及线圈温度过高导致的零部件过热损坏,其中振幅过大通常发生在谐振频率处,而线圈温度过高则更多是由于驱动信号偏离谐振频率时的电能-机械能转换效率下降导致的热量累积。

因此,现有的线性电机驱动结构及驱动方式存在缺陷,需要改进。

【发明内容】

本发明的目的在于提供一种线性电机驱动装置及线性电机驱动方法,其用于延长电机的使用寿命,提升产品性能,防止因振幅过大或温度过高导致的电机损毁。

为了解决上述技术问题,本发明提供了一种线性电机驱动装置,包括依次连接的振幅及温度检测单元、增益控制器、线圈电阻探测器及放大器;

所述振幅及温度检测单元接收电机驱动输入信号及所述放大器输出的反馈驱动信号,并根据所述电机驱动输入信号及所述反馈驱动信号输出对应的预估电机振幅及实时温度;

所述增益控制器接收所述预估电机振幅信号及所述实时温度,并分别根据所述预估振幅与所述电机的最大振幅的比值以及所述实时温度与所述电机的最大温度的比值输出增益控制信号至所述放大器;

所述线圈电阻探测器检测所述增益控制信号并获得与所述电机驱动输入信号对应的交流阻抗信号,所述交流阻抗信号经所述放大器输出;

所述放大器根据所述增益控制信号调整放大倍数并依据所述放大倍数对所述电机驱动输入信号进行放大并输出反馈驱动信号以驱动所述电机。

本发明所述的线性电机驱动装置中,所述振幅及温度检测单元包括第一测定部,

所述第一测定部接收所述反馈驱动信号,所述反馈驱动信号包括电压电流反馈驱动信号及所述交流阻抗信号,所述第一测定部根据所述反馈驱动信号获得电机阻抗Z,并结合所述交流阻抗信号获得机械阻抗Zm,并利用以下条件式获得所述预估电机振幅:

H(ω)=1jωZeZmBl+jωBl,Z=Ze+(Bl)2Zm,

其中,H(ω)为预估电机振幅,Bl为电力耦合系数,Z为电机阻抗,Zm为机械阻抗,Ze为线圈实时电阻值。

本发明所述的线性电机驱动装置中,所述振幅及温度检测单元包括第二测定部,

所述第二测定部根据线圈初始温度、对应所述初始温度的初始线圈电阻值以及所述实时电阻值获得与所述实时电阻值对应的所述实时温度。

本发明所述的线性电机驱动装置中,所述振幅及温度检测单元包括温度传感器,所述温度传感器实时监测所述实时温度。

本发明所述的线性电机驱动装置中,所述增益控制器包括第一增益处理器、第二增益处理器及分别与所述第一增益处理器及所述第二增益处理器相连的比较输出端;

所述第一增益处理器根据所述预估电机振幅与所述最大振幅输出第一增益;

所述第二增益处理器根据所述实时温度及所述最大温度输出第二增益;

所述比较输出端比较所述第一增益与第二增益输出所述增益控制信号。

进一步地,本发明还提供了一种使用上述的线性电机驱动装置的线性电机驱动方法,包括:

振幅及温度检测步骤:根据电机驱动输入信号及反馈驱动信号输出对应的预估电机振幅及实时温度;

增益控制步骤:分别根据所述预估振幅与所述电机的最大振幅的比值以及所述实时温度与所述电机的最大温度的比值输出增益控制信号;

线圈电阻探测步骤:检测所述增益控制信号并获得与所述电机驱动输入信号对应的交流阻抗信号,所述交流阻抗信号经所述反馈驱动信号输出;

反馈输出步骤:根据所述增益控制信号调整放大倍数并依据所述放大倍数对所述电机驱动输入信号进行放大并输出反馈驱动信号以驱动所述电机。

本发明所述的线性电机驱动方法中,所述振幅及温度检测步骤中,所述反馈驱动信号包括电压电流反馈驱动信号及所述交流阻抗信号,所述预估电机振幅根据以下公式获得:

H(ω)=1jωZeZmBl+jωBl,Z=Ze+(Bl)2Zm,

其中,H(ω)为预估电机振幅;

Bl为电力耦合系数;

Z为电机阻抗,根据所述电压电流反馈驱动信号获得;

Zm为机械阻抗;

Ze为线圈实时电阻值,由所述电压电流反馈驱动信号及所述交流阻抗信号结合获得。

本发明所述的线性电机驱动方法中,所述振幅及温度检测步骤中,根据线圈初始温度、对应所述初始温度的初始线圈电阻值以及所述实时电阻值获得与所述实时电阻值对应的所述实时温度。

本发明所述的线性电机驱动方法中,所述振幅及温度检测步骤中,所述实时温度由温度传感器实时监测获得。

本发明所述的线性电机驱动方法中,所述增益控步骤包括:

根据所述预估电机振幅与所述最大振幅输出第一增益;

根据所述实时温度及所述最大温度输出第二增益;

比较所述第一增益与第二增益输出所述增益控制信号。

采用本发明的线性电机驱动装置及线性电机驱动方法,能根据当前预估振幅与最大振幅调整输出的驱动信号的大小,并且在温度过高时对应修正放大器的放大系数,因此能有效防止线性电机由于振动幅度过大造成的机械损坏以及线圈温度过高导致的零部件过热损坏,显著提高电机性能,延长电机的使用寿命。

【附图说明】

图1是本发明提供的线性电机驱动装置的优选实施例的结构示意图。

图2为图1所示线性电机驱动装置的增益控制器的结构示意图。

【具体实施方式】

下面结合附图和实施方式对本发明作进一步详细描述。以下实施例仅用于对本发明进行解释说明,但不用来限制本发明的范围。

如图1所示,本发明提供了一种线性电机驱动装置,包括依次连接的振幅及温度检测单元100、增益控制器200、线圈电阻探测器300及放大器500。

其中,振幅及温度检测单元100接收电机驱动输入信号Fin及由放大器500输出的反馈驱动信号Fout,并根据电机驱动输入信号Fin及反馈驱动信号Fout输出对应的预估电机振幅H(ω)及实时温度Tm。振幅及温度检测单元100包括用于检测获取预估电机振幅H(ω)的第一测定部101以及用于检测获取实时温度Tm的第二测定部102。

在第一测定部101中通过构建振幅模型以获得与电机驱动输入信号Fin对应的预估电机振幅H(ω):

第一测定部101接收反馈驱动信号Fout,该反馈驱动信号Fout包括电压电流反馈驱动信号及交流阻抗信号,第一测定部101根据反馈驱动信号Fout获得电机阻抗Z,并结合所述交流阻抗信号获得机械阻抗Zm,并利用以下条件式获得所述预估电机振幅,

H(ω)=1jωZeZmBl+jωBl,Z=Ze+(Bl)2Zm,

其中,H(ω)为预估电机振幅,Bl为电力耦合系数,Z为电机阻抗,Zm为机械阻抗,Ze为线圈实时电阻值。

具体地,以单谐振频率线性电机为例,线性条件下,机械系统在安培力驱动下的振动满足方程:

F=Mmx··+Rmx·+Kmx---(1)

其中F=Bli代表线圈所受的安培力,Bl为电力耦合系数,i为线圈电流;Mm、Rm以及Km分别为振动系统的质量,阻尼以及劲度系数。

电机所受驱动电压与线圈电流的关系可表示为:

u=Rei+Ledidt+Blx·---(2)

其中u为驱动电压,i为线圈电流,Re,Le分别为线圈直流电阻及电感。

(1),(2)两式的傅里叶变换形式分别为:

BlI(ω)=jωZm·X(ω)(3)

U(ω)=Ze·I(ω)+jωBl·X(ω)(4)

其中Ze=Re+jωLe分别为振动系统的机械阻抗和线圈实时电阻值。且机械阻抗Zm与线圈实时电阻值之间具有以下关系:

Z=Ze+(Bl)2Zm,Z=U(ω)I(ω)

其中Z为电机阻抗,可通过上述电压电流反馈驱动信号中的输出电压U(ω)与输出电流I(ω)的比值获得。

由(3),(4)两式可以得到电机的振幅-输入电压传递函数,即振幅模型d的传递函数:

H(ω)=1jωZeZmBl+jωBl---(5)

对移动设备采用的微型线性电机而言,线圈的电感一般可以忽略。在工作过程中,线圈直流电阻可以近似认为不变,即认为振幅模型的变化主要受Zm变化的影响。该传递函数即可用来预测特定输入信号下电机达到的振幅,通过对比该预估电机振幅H(ω)与已知的电机最大振幅Hmax,增益控制器200可调整反馈驱动信号Fout使电机工作在最大振幅及以下的安全范围内。

在第二测定部102中,由于电机结构的密闭性,线圈温度通常无法直接测量,通过以下方程式构建温度模型以获得与电机驱动输入信号Fin对应的实时温度Tm:

C=dRRdT

其中,c为电阻温度系数,dR为导线的电阻变化,dT为相应的导线温度变化。c的值仅与导线材料相关,而不受导线几何尺寸的影响。因此,已知导线在某一初始温度T0下的直流阻值R0以及导线材料对应的电阻温度系数c,即可根据导线在后续任意时刻的直流阻值(即上述的线圈实时电阻值Ze)估算导线的实时温度Tm。

线圈电阻探测器300检测所述增益控制信号并获得与所述电机驱动输入信号对应的交流阻抗信号,所述交流阻抗信号经所述放大器500随反馈驱动信号Fout输出。线圈电阻探测器300的作用为结合电压电流反馈驱动信号,测量与该信号相同频点处的电机交流阻,用以近似实时线圈直流电阻值。因此探测信号需要满足频率低,幅度小,远离谐振频率等特点,在尽量不影响电机正常振动的情况下近似测量线圈直流电阻。同时,电压电流反馈驱动信号能够获取驱动信号相同频点处的电机阻抗值,结合线圈直流电阻的测量结果,得到实时的振幅模型及温度模型并用于电机预估振幅及实时温度的计算。

增益控制器200接收上述的预估电机振幅信号H(ω)及实时温度Tm,并分别根据所述预估振幅H(ω)与所述电机的最大振幅Hmax的比值以及实时温度Tm与所述电机的最大温度Tmax的比值输出增益控制信号至放大器500。具体地,如图2所示,所述增益控制器500包括第一增益处理器501、第二增益处理器502及分别与第一增益处理器501及第二增益处理器502相连的比较输出端503。

第一增益处理器501根据所述预估电机振幅H(ω)与所述最大振幅Hmax输出第一增益;

第二增益处理器502根据所述实时温度Tm及所述最大温度Tmax输出第二增益;

比较输出端503比较所述第一增益与第二增益输出所述增益控制信号。

对上述两个增益的比较输出增益控制信号,最终所述放大器500根据所述增益控制信号调整放大倍数并依据所述放大倍数对所述电机驱动输入信号Fin进行放大并输出反馈驱动信号Fout以驱动所述电机,可保证经放大器500输出的反馈驱动信号Fout能有效驱动电机,且确保电机即不会因振幅过大导致机械损坏,也免于受温度影响造成的零件过热损毁。或者,在具体情况下,用户可在上述两个增益中任选其一以调整放大器500的放大倍数,具体以实际情况为准。

在本发明的另一优选实施例中,上述的实时温度Tm也可以采用集成在主板上的温度传感器实时监测获得,该温度传感器在每次系统上电的同时记录主板温度及电机线圈直流电阻,并认为此时的主板温度与电机线圈温度相同。

进一步地,本发明还提供了一种使用上述的线性电机驱动装置的线性电机驱动方法,该线性电机驱动装置具有如上所述及附图1-2所示的驱动装置的全部技术特征,在此不作赘述。具体地,该线性电机驱动方法包括:

振幅及温度检测步骤:由振幅及温度检测单元100接收电机驱动输入信号Fin及由放大器500输出的反馈驱动信号Fout,根据电机驱动输入信号Fin及反馈驱动信号Fout输出对应的预估电机振幅H(ω)及实时温度Tm。

增益控制步骤:由增益控制器200接收上述的预估电机振幅信号H(ω)及实时温度Tm,分别根据所述预估振幅H(ω)与所述电机的最大振幅Hmax的比值以及所述实时温度Tm与所述电机的最大温度Tmax的比值输出增益控制信号。所述增益控步骤包括:第一增益处理器501根据所述预估电机振幅与所述最大振幅输出第一增益;第二增益处理器502根据所述实时温度及所述最大温度输出第二增益;比较输出端503比较所述第一增益与第二增益输出所述增益控制信号。

线圈电阻探测步骤:由线圈电阻探测器300检测所述增益控制信号并获得与所述电机驱动输入信号对应的交流阻抗信号,所述交流阻抗信号经所述反馈驱动信号Fout输出。

反馈输出步骤:放大器500根据所述增益控制信号调整放大倍数并依据所述放大倍数对所述电机驱动输入信号Fin进行放大并输出反馈驱动信号Fout以驱动所述电机。

所述振幅及温度检测步骤中,所述反馈驱动信号Fout包括电压电流反馈驱动信号及所述交流阻抗信号,第一测定部100根据以下公式获得所述预估电机振幅H(ω):

H(ω)=1jωZeZmBl+jωBl,Z=Ze+(Bl)2Zm,

其中,H(ω)为预估电机振幅;

Bl为电力耦合系数;

Z为电机阻抗,根据所述电压电流反馈驱动信号获得;

Zm为机械阻抗;

Ze为线圈实时电阻值,由所述电压电流反馈驱动信号及所述交流阻抗信号结合获得。

所述振幅及温度检测步骤中,第二测定部102根据线圈初始温度T0、对应所述初始温度T0的初始线圈电阻值R0以及所述实时电阻值Ze获得与所述实时电阻值Ze对应的所述实时温度Tm。在其他优选的实施例中,所述实时温度Tm也可由温度传感器实时监测获得。

采用本发明的线性电机驱动装置及线性电机驱动方法,能根据当前预估振幅与最大振幅调整输出的驱动信号的大小,并且在温度过高时对应修正放大器的放大系数,因此能有效防止线性电机由于振动幅度过大造成的机械损坏以及线圈温度过高导致的零部件过热损坏,显著提高电机性能,延长电机的使用寿命。

以上所述的仅是本发明的较佳实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号