首页> 中国专利> 基于锂的电池负极的嵌入硅化镍纳米丝中的硅纳米丝结构

基于锂的电池负极的嵌入硅化镍纳米丝中的硅纳米丝结构

摘要

本发明涉及基于锂的电池负极的嵌入硅化镍纳米丝中的硅纳米丝结构。本发明提供了用于基于锂的电池负极及包含其的负极的嵌入硅化镍纳米丝中的硅纳米丝结构。特别地,根据本发明的嵌入NiSi

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-04-19

    授权

    授权

  • 2016-12-14

    实质审查的生效 IPC(主分类):H01M4/38 申请日:20141124

    实质审查的生效

  • 2015-07-01

    公开

    公开

说明书

技术领域

本发明涉及用于基于锂(Li)的电池负极的嵌入硅化镍(NiSix)纳米 丝中的硅(Si)纳米丝结构。特别地,本发明提供了嵌入NiSix纳米丝中 的Si纳米丝结构,以及包含所述Si纳米丝的负极。因此,一些技术上的 困难,例如,在电池使用过程中,当Si纳米丝通过与锂(Li)合金化膨胀 或收缩时出现的Si纳米丝从集电器上断开的情况,以及类似问题,有可 能通过将Si纳米丝柔性地嵌入NiSix纳米丝中和嵌入到包含所述Si纳米丝 的负极上而得以解决。

背景技术

高性能和大容量的电池具有不断增长的需求,以作为便携式电子设 备,电动车辆等的电源。

这种电池通过利用能够在正电极(正极)和负电极(负极)发生电化 学反应的材料来产生电能。高性能电池的典型例子可以包括锂二次电池, 它是基于当锂离子在正极和负极中插入或去插入时化学势的改变而产生 电能。

这种锂二次电池可以过采用有机电解溶液来提供高能量密度,并且与 仅使用碱性水溶液的电池相比具有两倍或者更高的放电电压。锂二次电池 可以过采用能够将锂离子可逆地插入/去插入转化的材料作为正极和负极 活性材料,并且在正极和负极之间填充有机电解质溶液或者聚合物电解质 溶液而制造。

虽然对于电池的研究和开发已经持续了约20年,但是锂二次电池在 能量容量方面存在限制,因为使用在正极中的氧化物或磷酸盐材料的组合 以及在负极中的石墨。

因此,为了应用这种锂二次电池,尤其是应用到电动车辆上,具有高 锂存储能力的电极材料是正极和负极都需要的。硅(Si)可以拥有最高的 锂合金化能力,例如,约3800mAh/g,这比石墨的锂合金化能力高约10 倍。因此,Si可以是最合适的负极材料。然而,当Li与Si合金化时,在 作为基质材料的Si中可能会出现较大的体积变化,并且可能会导致基于 硅的负极的破裂和迅速粉碎。就这点而言,几十年来,通过引入Si纳米 结构,特别是纳米丝,得到了负极的使用寿命和充放电速率的显著改善。 由于Si纳米结构的较高的表面与体积比率,这种纳米结构可能比其他结 构更加耐受由其表面效应引起的应力,还可以较强地抗开裂。

相关技术,提供了合成用于基于Li的电池负极的Si纳米丝的方法, 例如,生长方法和蚀刻方法。

生长方法实例,其可在化学气相沉积(CVD)反应器中完成,可以 是非常大规模的技术。同时,这种蚀刻方法可以通过对大块的晶体Si,如 Si晶片和硅粉,进行蚀刻来获得硅纳米丝。

在该生长方法中,可以使Si纳米丝直接生长在负极的集电器上。在 使用被蚀刻的Si纳米丝时,该Si纳米丝可以包含在粘合剂中,例如聚合 物粘合剂,其包含浆料和导电添加剂,比如基于碳的粉末。所述浆料在应 用之前通常会通过流延成型沉积在电池电极的集电器上并且在烘箱中干 燥,因此从浆料中去除溶剂。

然而,相关技术中已经报道了一些在Si纳米丝生长期间的技术问题。

比如,通过使用粘合剂和导电粉末来稀释活性材料,表明给定负极物 质中只有一部分会有助于Li储存。同样的问题也会出现在基于石墨的负 极上。与石墨理论容量372mAh/g相比,通过淤浆方法制造的商用负极只 能提供最高275到300mAh/g。

此外,当通过与Li合金化来使Si纳米丝膨胀时,该Si纳米丝会“向 后推”(push back)周围的粘合剂和导电颗粒。特别是,在电池使用中, 当所述Si纳米丝收缩并且Li作为电解质释放时,这种周围的粘合剂和颗 粒会离开原初位置。因此,一些纳米丝会从集电器上断开,从而导致电极 的容量损失。

而且,集电器上负极材料的厚度,或者是负极每平方厘米的电荷容量, 会因分层而受到限制,当厚度在几十个微米范围内时迅速出现分层。

在相关技术中,提供了制造硅化镍的方法,它包括:(a)在衬底上形 成钌层;(b)通过CVD在钌层形成镍层;(c)通过使钌层和镍层经历300 到1100℃的热处理40秒,来形成硅化镍。

此外,介绍了通过以下步骤制造嵌入氧化物层和氮化物层中的非挥发 性纳米晶体(NC)的硅化镍的技术:通过RCA方法去除p型硅晶片上的 氧化物和微粒,通过干氧化法在大气CVD系统中,生长3nm隧道氧化物 从而沉积Ni0.3Si0.7层;以及通过快速热退火(RTA)方法在氮气氛下进行 退火。在另一个实例中,开发了制造包括厚约30nm的多晶NiSi2核芯的 纯NiSi纳米丝,掺杂有无定型Ni的SiO外壳纳米丝,以及使用硅烷通过 CVD炉在不锈钢衬底上沉积厚度约2nm的Ni催化剂层上的镍的技术。 此外,提供了通过使镍薄膜在涂有氧化硅的有序的硅纳米丝阵列上反应而 制造带有NiSi2尖端阵列的有序的Si纳米丝的技术。

然而,在相关领域中上文所述的技术依旧没有提供进一步的解决方 案,比如,由容量损失或厚度限制引起的物理性质的劣化或结构缺陷。

在背景技术部分中公开的上述信息,仅仅用于增强对发明背景的理 解,因此可能会包含不构成已经被该国家本领域的普通技术人员已知的现 有技术的信息。

发明内容

本发明提供了上述相关技术问题的技术技术解决方案。例如,当将蚀 刻在集电器上的Si纳米丝加载入CVD反应器中,并且用CVD方法生长 NiSix纳米丝以将Si纳米丝柔性地嵌入NiSix纳米丝中时,制成的Si纳米 丝结构会减少在电池使用过程中当Si纳米丝通过与Li合金化而膨胀或缩 短时可能出现的缺陷,等等。

因此,本发明可以提供嵌入硅化镍(NiSix)纳米丝中的硅(Si)纳米 丝结构,其能够应用作为基于锂(Li)的电池负极。此外,提供了硅纳米 丝结构,其中蚀刻于集电器上的Si纳米丝被固定;以及制造所述硅纳米 丝结构的方法。

本发明进一步提供了用于基于锂的电池负极的包含嵌入硅化镍纳米 丝中的硅纳米丝结构的负极。

一方面,本发明提供了嵌入NiSix纳米丝中的Si纳米丝结构,其可以 包括:Si纳米丝,所述Si纳米丝被提供在沉积于衬底上的镍(Ni)薄膜 上;和NiSix纳米丝,其可以将Si纳米丝嵌入在Ni薄膜上。

另一方面,本发明提供了制造嵌入NiSix纳米丝中的Si纳米丝结构的 方法。该方法可以包括:在衬底上沉积和覆盖Ni薄膜;通过蚀刻方法获 得Si纳米丝;将该Si纳米丝分散在悬浮溶液中;将含有Si纳米丝的悬浮 溶液提供到涂覆有Ni薄膜的衬底上;将Si纳米丝和涂覆有Ni薄膜的衬 底加载入化学气相沉积(CVD)反应器;通过向CVD反应器中引入氢气 (H2)和硅烷气体(SiH4)进行CVD方法来使NiSix纳米丝生长。

依据本发明的示例性实施例的嵌入NiSix纳米丝中的Si纳米丝结构, 能够避免在电池使用过程中,当Si纳米丝通过与Li合金化而膨胀或收缩 时所出现的缺陷。特别地,由于所述Si纳米丝结构性能的提高,该Si纳 米丝结构能够防止,在电池使用过程中,当Si纳米丝通过与Li合金化而 膨胀或收缩时所出现的Si纳米丝从集电器上断开的情况。例如,可以保 持约75%的原初容量,甚至是在约250次的充放电循环之后。此外,依据 本发明的示例性实施例的NiSix纳米丝能够柔性嵌入Si纳米丝。因此,本 发明所述硅纳米丝结构能够应用于锂二次电池负极。

以下讨论本发明的其他方面以及示例性实施方式。

附图说明

现参照附图对其进行说明的示例性实施方式,详细地描述本发明的以 上所述以及其他的特征,它们只作为说明的目的在下面给出,因此并不限 制本发明,并且其中:

图1的(a)示意地说明了,根据本发明的一种示例性实施方式,在 锂化出现之前,嵌入NiSix纳米丝中的示例性Si纳米丝结构,而图1的(b) 示意地说明了,在锂化出现之后,示例性修饰的Si纳米丝结构。

图2的(a)和(b)分别是横截面结构视图和俯视图(plan view平 面图)。它们示意地说明了,根据本发明的示例性实施方式,在CVD之前, 在涂覆有Ni和NiSix纳米丝的衬底上的示例性Si纳米丝。

图3的(a)和(b)分别是横截面示意图和俯视图。它们示意地说明 了,根据本发明的示例性实施方式,嵌入NiSix纳米丝中的示例性硅纳米 丝结构。

图4是方框图,说明了,根据本发明的示例性实施方式,制造嵌入 NiSix纳米丝中的Si纳米丝结构的方法的示例性过程。

图5是曲线图,说明了,包含嵌入根据本发明的示例性实施方式的方 法制造的NiSix纳米丝中的Si纳米丝结构的示例性负极的一般性老化曲线 (general ageing curve)。

图6是曲线图,说明了通过根据比较实施例的方法制造的常规负极的 充放电周期容量的变化。

图中给出的引用数字包括提及下面进一步讨论的以下元素:

110:衬底           120:Ni薄膜

130:Si纳米丝       140:NiSix纳米丝

应当了解的是,附图不必要按比例绘制,它提供了说明本发明基本原 理的多种示例性特征的一定程度的简化表示。在此公开的本发明的具体设 计特征,包括,例如,具体尺寸,方向,位置以及形状,在部分地由具体 预期的应用和使用环境来决定。

在附图中,贯穿附图的数个图中,引用数字是指本发明的相同或等效 部分。

具体实施方式

应理解的是,在此使用的术语“车辆”、“车辆的”或者其他类似术语包 含一般性的机动车辆,例如客运汽车,它包括:运动型多用途汽车(SUV), 公共汽车,卡车,各种商用车辆;船只,它包括:各种各样的船艇和舰船; 飞行器等;并且包含混合动力车,电动车,插电式混合动力电动车辆,氢 能源汽车以及其他可替代燃料汽车(如,源于除了石油之外的资源的燃 料)。如这里所指的,混合燃料汽车是拥有两种或两种以上动力源的汽车, 比如汽油动力和电动力两者的汽车。

这里使用的术语仅用于描述具体实施方式的目的,而并不旨在限制本 发明。如这里使用的,单数形式“一种”、“一个”和“该”旨在也包括复数形 式,除非上下文中另有明显的说明。应当进一步理解的是,术语“包含”和 /或“包含了”,当在本说明书中使用时,是指存在所述特征,整数,步骤, 操作,元素,和/或成分,但并不排除存在或添加一个或多个其他特征,整 数,步骤,操作,元素,成分、和/或它们的组。如本文所使用的,术语“和 /或”包含相关列出项目的一个或多个的任何组合以及所有组合。

除非明确说明或从上下文中显而易见,如这里使用的,术语“约”要理 解为在本领域正常的公差范围之内,如在2倍的平均值标准差之内。“约” 可以理解为在所述值的10%、9%、8%、7%、6%、5%、4%、3%、2%、 1%、0.5%、0.1%、0.05%、或0.01%之内。除非上下文另有明确说明,本 文提供的所有数值都要被术语“约”修饰。

下文中会详细提到本发明的各种示例性实施方式,它们的实施例在附 图中说明,并且在下文中描述。当本发明结合示例性实施方式进行描述时, 应当理解为本发明说明书并不旨在将本发明局限在那些示例性实施方式 中。相反地,本发明旨在不仅覆盖这些示例性实施方式,还要覆盖可以包 含在由所附权利要求限定的本发明的精神和范围内的各种替代物,改进 物,等效物以及其他实施方式。

以下更加详细地描述了本发明的示例性实施方式。

本发明涉及沉积在中Ni薄膜上,并且嵌入NiSix纳米丝中的硅纳米 丝结构,且提供了能够固定蚀刻在集电器上的Si纳米丝的负极结构,以 及制造该Si纳米丝结构的方法。

可以将根据本发明的示例性实施方式的嵌入NiSix纳米丝中的Si纳米 丝结构形成在衬底上。特别地,这种衬底可以是,但不局限于,Cu衬底 或者一种不锈钢(steel-use-stainless)(SUS)衬底。在示例性实施方式中, 所述衬底可以是负极的集电器,但不限于此。在示例性实施方式中,Ni 薄膜可以通过沉积而涂覆在衬底上。特别地,Ni薄膜的厚度可以是,但不 局限于,约200到约500nm的范围内。在另一示例性实施方式中,Ni泡 沫可以用来代替Ni薄膜。此外,所述Si纳米丝可以通过蚀刻方法而获得。

在示例性实施方式中,所述嵌入NiSix纳米丝中的Si纳米丝结构可以 形成在衬底上。特别地,该嵌入结构可以通过以下步骤获得:先向涂覆有 Ni薄膜的衬底上提供要求量的Si纳米丝,再将Si纳米丝加载入CVD反 应器中,并且通过执行CVD方法来使NiSix纳米丝生长同时向其中引入 H2和SiH4

在示例性实施方式中,制造嵌入NiSix纳米丝中的Si纳米丝结构的方 法可以包括:准备衬底;在衬底上沉积Ni薄膜;通过蚀刻方法获得Si纳 米丝;将所述Si纳米丝分散在悬浮溶液中;将含有所述Si纳米丝的悬浮 溶液提供在覆盖有Ni薄膜的衬底上;在将需要量的Si纳米丝提供在涂覆 有Ni薄膜的衬底上之后,将所述的Si纳米丝以及涂覆有Ni薄膜的衬底 加载入CVD反应器中;并且使NiSix纳米丝生长同时将H2和SiH4引入 CVD反应器中以进行CVD方法。

根据本发明的示例性实施方式,可以通过单个蚀刻晶体硅晶片或晶体 硅粉末来获得所述Si纳米丝,但不限于此。特别地,可以通过金属辅助 化学蚀刻由晶体Si晶片或晶体Si粉末获得Si纳米丝,但不限于此。

随后,可以将获得的Si纳米丝分散在悬浮溶液中。特别地,该悬浮 溶液可以是基于酒精的溶液。该基于酒精的悬浮溶液可以包括,但不限于, 乙醇酒精,或者是基于酒精的成分,比如99.9%的乙醇。此外,该含有Si 纳米丝的悬浮溶液可以通过在室温下将所述Si纳米丝分散在所述的悬浮 溶液中而准备。

进一步的,在本发明的示例性实施方式中,可以通滴落的方法将该悬 浮溶液中的Si纳米丝提供在涂覆有Ni薄膜的衬底上,但不限于此。此外, 将含有Si纳米丝的溶液提供在涂覆有Ni薄膜的衬底上的过程可以继续进 行直到希望量的Si纳米丝提供在涂覆有Ni薄膜的衬底上。

在希望量的Si纳米丝提供在涂覆有Ni薄膜的衬底上之后,可以将所 述Si纳米丝加载入化学气相沉积(CVD)反应器中。当提供了集电器衬 底所要求的希望量的Si纳米丝时,可以将Si纳米丝和涂覆有Ni薄膜的衬 底加载到所述CVD反应器中来生长NiSix纳米丝。在示例性实施方式中, 所述NiSix纳米丝可以通过向所述CVD反应器中通入H2和SiH4以实施 CVD方法而生长。特别地,在约40到约60mTorr的压力下,可以分别以 约350到450sccm和约0.5到约1.5sccm的速率将H2和SiH4引入CVD 反应器中。另外,在所述CVD反应器中生长NiSix的过程可以在约300℃ 到约500℃的温度和约10-5Torr到约10-7Torr的压力下进行。

所述NiSix纳米丝,其中嵌入了Si纳米丝,可以将所述硅纳米丝连接 在集电器上,还可以容易地承受Si纳米丝体积的变化,尤其是,在与作 为弹性粘合剂的Li合金化和去合金化期间。

在本发明的示例性实施方式中,用于锂二次电池的负极可以通过使用 嵌入根据上面描述的示例性实施方式制造的NiSix纳米丝中的Si纳米丝结 构来制造。包含根据本发明的示例性实施方式嵌入NiSix纳米丝中的Si纳 米丝结构的负极可以包含:衬底;沉积在该衬底上的Ni薄膜;沉积在该 Ni薄膜上的Si纳米丝;以及,嵌入所述Si纳米丝同时沉积在所述Ni薄 膜上的NiSix纳米丝。

图1中,说明了根据本发明的示例性实施方式嵌入NiSix纳米丝中的 Si纳米丝结构。如图1的(a)所示,在锂化发生之前,可以将衬底110 上的Ni薄膜120上的Si纳米丝130嵌入SiNix纳米丝140中。如图1的 (b)所示,在锂化发生之后,该弹性NiSix纳米丝可以持续支撑Si纳米 丝,因此在集电器上提供了电接触,和粘结性能。根据本发明的各种示例 性实施方式,图1的(a)和(b)说明了嵌入NiSix纳米丝中的Si纳米丝 结构的修饰形式,但不限于此。

图1的(a)说明了在锂化发生之前嵌入NiSix纳米丝中的示例性Si 纳米丝结构。图1的(b)说明了在锂化发生后图1的(a)的示例性修饰 形式。因为弹性SiNix纳米丝持续支撑了所述Si纳米丝,同时,甚至在锂 化后,保持了被嵌入的状态,因此可以在集电器上提供电接触和粘结性能。

图1进一步说明了形状的横截面形式,其中,Ni薄膜120通过在衬 底110上沉积Ni膜而形成,所述NiSix纳米丝140随机排列,该NiSix纳 米丝140在SiH4流下生长,同时与Si纳米丝130一起嵌入。详细的说, 说明了所述NiSix纳米丝140在所述衬底110上的生长和排列方向,并且 NiSix纳米丝140是由沉积于衬底上的Ni薄膜120生长的。根据示例性实 施方式,所述NiSix纳米丝140可以在所述CVD反应器中在SiH4流下生 长。所述NiSix纳米丝140可以相对于衬底110的平面的随机角度上生长, 或者所述NiSix纳米丝140可以不垂直于该平面。在这方面,所述NiSix纳米丝140可以生长在已经布置在所述Ni薄膜120上的所述Si纳米丝130 上。因此,如图1所说明的,所述NiSix纳米丝140能够与Si纳米丝130 一起嵌入。

图2的(a)和(b)分别是横截面结构视图和俯视图,它们示意地说 明了,被嵌入在涂覆有Ni和NiSix纳米丝的衬底上之前Si纳米丝的示例 性方向。图2中,当所述Si纳米丝110形成于涂覆有Ni的衬底上,并且 NiSix纳米丝生长于其上时,可以形成如图1中的示例性Si纳米丝结构。

图3的(a)和(b)分别是横截面示意性视图和俯视图,它们示意地 说明了示例性Si纳米丝结构,其中,根据本发明的示例性实施方式所述 NiSix纳米丝140与所述Si纳米丝130一起嵌入衬底110上。图3进一步 说明了示例性NiSix纳米丝140,在Si纳米丝130沉积到涂覆有Ni的衬底 上后该NiSix纳米丝140可以随机生长。因为所述NiSix纳米丝140较长且 具有柔性,所述NiSix纳米丝140可以提供一种相对于Si纳米丝130的弹 性接触,还具有在锂二次电池的操作过程中,当与锂合金化时,可以承受 所述Si纳米丝的体积膨胀的结构。

如上文所描述,根据本发明的各种示例性实施方式所述Si纳米丝结 构,可以为以下问题提供解决方案,比如,在电池使用期间,当Si纳米 丝通过与锂合金化而膨胀或收缩时所显示出的Si纳米丝从集电器上断开, 以及类似情况,因为所述Si纳米丝可以展示出提高的性能,即,保持约 75%的原初容量,甚至在250次的充放电周期之后;并且进一步地,NiSix纳米丝可以柔性地与Si纳米丝一起嵌入。

在下文中,将参考实施例来详细地描述本发明,但本发明不局限于此。

本发明的实施例并不是所有可能实施例的全面概述,并且并非旨在识 别所有元素中的核心元素或覆盖所有实施例的范围。本发明的实施例是通 过利用简化形式的实施例作为具体实施方式的示例性实施方式而提供概 念。

实施例

接下来的实施例说明了本发明,但并非旨在限制本发明。

可以通过图4中描述的方法来制造嵌入NiSix纳米丝中的Si纳米丝结 构。

在示例性实施方式中,该制造方法可以包括:在步骤410中,准备衬 底;在步骤420中,将Ni薄膜沉积于衬底上;在步骤430中,通过蚀刻 方法获得Si纳米丝;在步骤440中,将该Si纳米丝分散在悬浮溶液中; 在步骤450中,将包含所述Si纳米丝的悬浮溶液提供在涂覆有所述Ni薄 膜的所述衬底上;在步骤460中,在将希望量的Si纳米丝提供于涂覆有 所述Ni薄膜的所述衬底上后,将该Si纳米丝和该涂覆有所述Ni薄膜的 衬底加载入CVD反应器;以及在步骤470中,通过执行CVD方法同时向 CVD反应器中引入H2和SiH4来生长所述NiSix纳米丝。

在步骤410中,可以准备衬底。该衬底可以是通过使用SUS衬底的 负极的集电器。在步骤420中,可以将所述Ni薄膜沉积在该衬底上。特 别地,该Ni薄膜的厚度约为200nm。在步骤430中,所述Si纳米丝可以 通过所述蚀刻方法获得。特别地,该Si纳米丝可以单独地通过在晶体Si 晶片上使用金属辅助化学蚀刻来获得。

在步骤440中,可以将蚀刻后获得的所述Si纳米丝分散在所述悬浮 溶液中。至于悬浮溶液,可以使用基于酒精的悬浮液。当将所述Si纳米 丝分散在基于酒精的液体悬浮溶液中时,例如,99%的乙醇,这些丝能够 在溶液中混合。当在随后的步骤中,可以将包含所述Si纳米丝的悬浮溶 液滴在衬底上时,这些丝可以保持在衬底上,并且当所述溶液蒸发时,随 机地分布于衬底上。

在步骤450中,所述包含Si纳米丝的悬浮溶液,可以通过,但不局 限于,滴落的方法来提供。可以使用滴管来进行该滴落方法。提供在衬底 上的所述Si纳米丝可以随机地布置。当所述Si纳米丝分散在所述悬浮溶 液中,然后通过滴落将包含Si纳米丝的悬浮溶液滴在衬底上时,Si纳米 丝可以随机地分布在衬底上,而且将溶液蒸发。

在步骤460中,当将希望量的所述Si纳米丝提供在涂覆有所述Ni 薄膜的衬底上时,可以将该纳米丝和该涂覆有所述Ni薄膜的衬底加载入 所述CVD反应器中。可以使用典型类型的CVD反应器,但不限于此。

在步骤470中,所述NiSix可以在约50mTorr的压力下,在所述CVD 反应器中生长,并且分别以约400sccm和约1sccm的速率向所述CVD反 应器中引入H2和SiH4。特别地,通过执行CVD方法使所述NiSix纳米丝 生长,可以在约400℃的温度下和约10-6Torr的压力下进行。所述NiSix纳米丝,通过使用CVD方法,能够随机地生长,且能够与所述Si纳米丝 一起嵌入。当所述CVD方法完成,且温度下降到小于约50℃之后,可以 将所述样品从CVD反应器中卸载,然后用作锂二次电池的负极。

在另一个示例性实施方式中,可以在将蚀刻于涂覆有Ni的集电器上 的Si纳米丝布置之后,使硅化镍(NiSix)生长,而不在方法中使用浆料。 在提供所述Si纳米丝之后生长的NiSix纳米丝可以形成,并与所述Si纳米 丝一起嵌入,从而将所述Si纳米丝附着于所述集电器上。因此,所述NiSix纳米丝能够提供结构以用作弹性粘合剂。

测试实施例

对于包含Si纳米机构的负极,其中所述NiSix纳米丝依据所述实施例 嵌入,评估了应用所述负极的示例性锂二次电池的性能。为了评估,可以 使用半电池安排进行各种电化学测试,而且可以使用在一侧上的负极电极 以及作为相对电极的纯金属Li。对于上述制备的半电池,可以在充满Ar 气同时保持湿度和氧气含量少于约1.0ppm的手套箱中准备容量测试和安 全测试。所述电池能够通过使用两个圆柱形不锈钢电极制造,该不锈钢电 极具有约14mm的直径且具有PTFE接头套管部分。

对于锂二次电池的电解质,可以使用在碳酸亚乙酯(EC)与碳酸二 乙酯(DEC)比例为3:7(vol%)的混合物中的约1.15M的六氟磷酸锂(LiPF6) 溶液作为电解质。

所述电极的电化学性质能够通过改变电池测试系统(BioLogic VSP) 的充放电速率而测量。在图5中示出的用于评估使用寿命的静电循环 (galvanostatic cycling)可以在对于Li/Li+的2.0到0V的电压窗口下测量。

作为结果,图5提供了老化曲线。因此,根据实施例的示例性实施方 式的Si纳米丝,甚至在约250次充放电循环之后,仍可以保持原初容量 的约75%。

比较实施例

为了做比较,图6说明了通过传统方法制造的电极的充放电循环容 量。该传统电极是负电极,其包含尺寸约为100nm大小的硅粉,该硅粉 的量约为60wt%,粘合剂,如约20wt%的PVDF,以及约20wt%的炭黑。 由该示例性传统负极测量的容量快速下降,不能承受在第一循环之后发生 的体积膨胀。

所述示例性实施方式的各类改变对于本发明技术领域的普通技术人 员来说都是显而易见的,并且在此定义的一般原理,在不背离本发明的范 围的情况下,可以应用到其他示例性实施方式中。因此,本发明不限于在 这里提出的示例性实施方式,而且应在最广泛的范围内去解读,这与在此 提出的原理以及新特征相一致。

本发明提供了一种技术,该技术能够应用于锂二次电池的负极,并且 能够用于改进负极Si纳米丝的结构。

参考其示例性实施方式,已对本发明进行了精细描述。然而,本领域 的普通技术人员应当理解的是在这些实施方式中可以做出改变,而不偏离 本发明的原理和精神,本发明的范围在附随的权利要求及其等效物中限 定。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号