首页> 中国专利> 大尺寸稀土掺杂氟化钇钡单晶生长方法

大尺寸稀土掺杂氟化钇钡单晶生长方法

摘要

本发明提供的一种大尺寸稀土掺杂氟化钇钡晶体生长方法,在加热炉内,按质量百分比将{xReF3+(1-x)YF3}:BaF2=2:1,x=0~100%多晶料置于坩埚中,抽真空,向加热炉内先后通入氩气;用控温仪控制加热功率使之熔化,坩埚内液面与炉内气体流动进行热交换形成轴向温度差,坩埚壁与坩埚中心形成径向温度差,引起熔体的自然对流;再用铂金夹头将BaY2F8籽晶固定于籽晶杆,下降籽晶与熔体接触进行氟化物晶体生长;当氟化物晶体生长到设定尺寸时,开始退火,以20°C/小时的降温速率降温至室温,通过调节转速和加热功率,直至晶体生长结束与熔体脱离,在坩埚内退火,获得大尺寸氟化物晶体。本发明解决了氟化物熔体流动性能差造成晶体生长困难、晶体中气泡多等生长不利因素。

著录项

  • 公开/公告号CN104562183A

    专利类型发明专利

  • 公开/公告日2015-04-29

    原文格式PDF

  • 申请/专利权人 西南技术物理研究所;

    申请/专利号CN201410845260.9

  • 申请日2014-12-31

  • 分类号C30B15/00(20060101);C30B29/12(20060101);

  • 代理机构成飞(集团)公司专利中心;

  • 代理人郭纯武

  • 地址 610041 四川省成都市武侯区人民南路4段7号

  • 入库时间 2023-12-18 08:20:29

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-01-19

    授权

    授权

  • 2015-05-27

    实质审查的生效 IPC(主分类):C30B15/00 申请日:20141231

    实质审查的生效

  • 2015-04-29

    公开

    公开

说明书

技术领域

本发明属于晶体生长领域,特别涉及一种稀土掺杂氟化钇钡Re:BaY2F8晶体,尤其是单晶尺寸大于50mm以上的大尺寸氟化物单晶生长方法。

背景技术

近年来稀土掺杂的上转换和激光材料在激光、光显示、大气监测、激光遥感、成像、激光医疗、激光雷达等领域具有广泛的应用前景而受到高度关注。稀土掺杂氟化钇钡晶体(Re:BaY2F8,Re:BYF)属于单斜晶系,双轴晶体。该晶体具有低的声子能量(最大声子能量415cm-1),光谱透过范围宽(0.12~12μm),生长的晶体具有直接输出中红外波段激光和较高的转换效率。其广泛用在红外的固体激光器、探测领域。合适的基质材料是高发光效率的关键条件。氟化物晶体具有较低的声子能量(最大声子能量415cm-1),光谱透过范围宽(0.12~12μm)有利于泵浦和中红外出激光,稀土掺杂的氟化物晶体具有低的无辐射多声子驰豫和相对较长的中间态荧光寿命,是一种较好的基质材料。但如果在原料合成中有组分偏离、吸水等问题会造成不一致挥发,在熔融状态下形成漂浮物,且晶体表面不透明,因此避免漂浮物形成和晶体不透明,生长的关键是采用氩气、氟气或四氟化碳等一种或多种混合气体生长气氛。相对于高温氧化物晶体,氟化物晶体的熔点要低得多,采用传统的熔体生长法,如提拉法(Czocharalski, Cz)、坩埚下降法(Bridgman)、温度梯度法(Temperature gradient technique, TGT)、KY凯罗泡生法等,很容易获得大尺寸氟化物单晶。氟化物熔点低,高温流动性差,存在生长大尺寸氟化物晶体驱动力不足,生长出的晶体易开裂等问题。

提拉法是目前生长高质量晶体应用最为广泛的方法之一,它的优点在于生长过程可以方便地观察晶体状况,生长速率快,晶体不与坩埚接触,生长时不会产生寄生成核而形成多晶,但是氟化物熔点低,不适合提拉法生长大尺寸晶体材料。提拉法加热方式采用中高频感应加热,其坩埚材料一般为铱金或铂金,成本高。

坩埚下降法也是目前生长大尺寸碱土氟化物晶体所采用最广泛的一种生长方法。实际上早在1936年采用坩埚下降法就已经获得了人工生长的CaF2单晶,但是,随着激光对紫外和中红外线波长的需求,对氟化物晶体的质量和尺寸都提出了很高的要求。该方法采用全封闭的坩埚,并适合大尺寸、多数量晶体的生长,其优点是操作工艺简单、易于实现程序化、自动化。但该方法的不足之处在于整个生长过程无法观测,生长过程中不能实时调整,且生长周期长,对生长条件要求苛刻。

温度梯度法可以避免因不规则机械振动源的干扰给熔体造成复杂对流和固-液界面的温度波动,因而所生长的晶体质量和单晶率要优于坩埚下降法,但是由于晶体生长过程完全靠扩散运输,晶体生长相对缓慢,生长晶体与温场之间没有相对移动,限制了晶体的高度;传统的顶部籽晶法生长过程中籽晶旋转,没有向上提拉生,生长周期长,同时该方法采用全封闭的坩埚,整个生长过程不可见,且其加热方式采用石墨加热,坩埚一般为石墨坩埚,石墨挥发会影响生长晶体质量。

发明内容

本发明针对上述现有技术存在的不足之处,提供一种生长过程中可以实时调整,生长周期短,生长速率高,材率高成本低,能够有效促进大尺寸晶体生长,并能明显改善晶体质量的稀土掺杂氟化钇钡晶体的生长方法,以克服氟化物熔体流动性能差造成晶体生长困难、晶体中气泡多等生长不利因素。

本发明的上述目的可以通过以下措施来达到,一种大尺寸稀土掺杂氟化钇钡晶体生长方法,其特征在于包括如下步骤:在加热炉内,按质量百分比将{xReF3+(1-x)YF3}: BaF2=2:1,x=0~100%多晶料,即BaY2F8到BaRe 2F8,其中X为掺杂氟化钇钡含量,稀土Re离子摩尔百分比为0~100%;将上述合成好的Re:BaY2F8多晶料装入铂金坩埚,抽真空至10-5Pa~3′10-5Pa,在400~500℃温度条件下,用通气管道向加热炉内先后通入氩气Ar、四氟化碳CF4气体;用控温仪控制加热功率使之熔化,熔化后至少恒温8小时,熔体完全熔化后,用铂金棒处理粘熔体表面漂浮物;坩埚内液面与炉内气体流动进行热交换形成轴向温度差,坩埚壁与坩埚中心形成径向温度差,引起熔体的自然对流;再用铂金夹头将晶轴方向为a或b方向BaY2F8籽晶固定于籽晶杆,籽晶转速控制在3rpm~5rpm,下降籽晶与熔体接触进行氟化物晶体生长,生长期间籽晶以3rpm~5rpm转速,向上以0.1~0.3mm/小时速率上升,使氟化物晶体生长以60~80度角度扩肩直至坩埚直径的80%~90%,然后通过自动直径控制系统(ADC)等径控制调节加热功率;当氟化物晶体生长到设定尺寸时,设定快速提拉脱离熔体,开始退火,退火温度为熔点的90%,退火时间为5~6小时,以20℃/小时的降温速率降温至室温,获得大尺寸氟化物晶体。

本发明相比于现有技术具有如下有益效果。

本发明结合提拉法和凯罗泡生法,采用改进的顶部籽晶泡生法(TSSG)生长Re:BaY2F8晶体的方法,改进的顶部籽晶法在保留籽晶转动的同时,增加提拉,生长速率提高。大尺寸生长取材率高成本低,微提拉生长缩短生长周期;适合大尺寸氟化物晶体,惰性气氛或惰性气氛加氟化物混合气氛生长,无氧杂质;生长过程可见可控,晶体尺寸大、晶体单晶的完整性提高,XRD测试与标准比对为完全单晶。现有低温度梯度晶体生长,生长驱动力低,生长相对缓慢,生长晶体与温场之间没有相对移动,限制了晶体的高度,以及采用全封闭的坩埚,整个生长过程不可见。

本发明采用多层反射结构,开大提拉孔径,形成的温场使Re:BaY2F8高温流动性好,利于热量和质量输运,提供晶体生长驱动力,解决生长大尺寸氟化物晶体困难、气泡多,易开裂质问题,同时提拉孔也作为观察孔,使得整个生长过程可观测,生长过程中可以实时调整,缩短生长周期。

本发明可广泛应用于近紫外、可见光、近红外、中红外领域。

附图说明

图1是实施本发明的电阻加热炉构造示意图。

图中:1铂金坩埚,2电阻加热器,3隔热屏,4加热器,5抽真空管,6直径控制系统ADC,7充气管,8籽晶杆,9氟化钇钡晶体,10熔体,11籽晶。

具体实施方式

下面通过实施例对本发明所述一种Re: BaY2F8晶体生长及热处理方法进行详细说明。

参阅图1。根据本发明,在加热炉内,按{xReF3+(1-x)YF3}: BaF2=2:1, 所需浓度X,x=0~100% BaRe 2F8,其中X为掺杂氟化钇钡含量,Re为Nd、Er、Ce、Ho、Tm、Eu、Pr、Dy、Sm、Tb,Re离子摩尔百分比为0~100%,Re为稀土离子钕Nd、铒Er、铈Ce、钬Ho、铥Tm、铕Eu和铬Cr中的至少一种掺杂的多晶料装入坩埚1中,坩埚置于石墨加热器2、加热器4中,真空泵从抽真空管5抽气,真空至10-5Pa~3′10-5Pa,在400~500℃温度条件下恒温,经通充气管7向加热炉内先后通入氩气Ar、四氟化碳CF4气体;用欧陆818控温仪控制加热功率直至熔化,熔化后至少恒温8小时;坩埚上加大的开孔引起的散热和加热器辐热量直接辐射到坩埚壁,形成大的轴向和径向温度分布,引起熔体的自然对流;将籽晶11固定在籽晶杆8上,转速控制在3rpm~5rpm,籽晶11下端与熔体10接触进行氟化物晶体生长,生长期间籽晶以3rpm~5rpm转速,0.1~0.3mm/小时提拉速率上升,使氟化物晶体9以60~80度角度扩肩直至坩埚直径的80%~90%,然后通过自动直径控制系统ADC通过调节加热功率保持所需直径;当氟化物晶体生长到设定尺寸时,快速提拉晶体9脱离氟化物晶体剩余熔体(10),开始退火,退火温度为熔点的90%,退火时间为5~6小时,以20℃/小时降温速率降温至室温,获得大尺寸氟化物晶体。氟化物晶体生长气氛为Ar或Ar+CF4,生长气压为95%Ar+5% CF4。镧系稀土Re离子中的一种到三种共同掺杂。可以采用电阻加热和石墨保温系统,在石墨坩埚内进行晶体生长。稀土掺杂氟化钇钡晶体退火在坩埚内进行。

实施例 1

在图1的装置中,在石墨加热的电阻加热炉内,按坩埚(1)容积称取Re:BaY2F8原料,,然后将其所述Re:BaY2F8原料装入铂金坩埚1中。抽真空(5)至3′10-5Pa,开始控制电阻加热器2加热,加热到350℃恒温,充氩气至0.04MPa,继续升温至Re:BaY2F8原料完全熔化,恒温1小时。籽晶固定于籽晶杆,籽晶11固定在籽晶杆8上,转速控制在3rpm~5rpm,籽晶11下端与熔体10接触进行氟化物晶体生长,生长期间籽晶以3rpm~5rpm转速,0.1~0.3mm/小时提拉速率上升,使氟化物晶体9以60~80度角度扩肩直至坩埚直径的80%~90%,然后通过自动直径控制系统ADC通过调节加热功率保持所需直径;当氟化物晶体生长到设定尺寸时,快速提拉氟化物晶体9脱离剩余熔体(10),开始退火,退火温度为熔点的90%,退火时间为5~6小时,以20℃/小时降温速率降温至室温,获得大尺寸氟化物晶体。

实施例 2

根据{xReF3+(1-x)YF3}: BaF2=2:1,选取最小4×4mm,长度不小于50mm的籽晶引晶,维持60度放肩角,制备Ho: BaY2F8原料,其中根据所需掺杂激活离子Ho3+浓度,掺杂X取0.3。在石墨加热的电阻加热炉内,铂金坩埚生长。按照坩埚容积称取Re:BaY2F8原料,然后将其与装入铂金坩埚中。加热到350℃恒温,充氩气至90%和10%CF4至0.04MPa,继续升温至Re:BaY2F8原料完全熔化。恒温1小时,籽籽晶11固定在籽晶杆8上,转速控制在3rpm~5rpm,籽晶11下端与熔体10接触进行氟化物晶体生长,生长期间籽晶以3rpm~5rpm转速,0.1~0.3mm/小时提拉速率上升,使氟化物晶体9以60~80度角度扩肩至坩埚内直径的80%~90%,然后通过自动直径控制系统ADC通过调节加热功率保持所需直径;当氟化物晶体生长到设定尺寸时,快速提拉氟化物晶体9脱离剩余熔体10,开始退火,退火温度为熔点的90%,退火时间为5~6小时,以20℃/小时降温速率降温至室温,获得大尺寸粉红色晶体。

实施例 3

在图1的装置中,在石墨加热的电阻加热炉内,石墨坩埚生长。称取Re:BaY2F8原料,按照坩埚容积,然后将其与装入铂金坩埚中。抽真空至3′10-5Pa,开始加热,加热到350℃恒温,充氩气95%和5%CF4至0.04MPa,继续升温至原料完全熔化。恒温1小时,籽晶11固定于籽晶杆8,籽晶11下端与熔体10接触。接着与0.1~0.3mm/小时提拉。晶体以60~80度角度扩肩直至坩埚直径的80~90%,然后通过ADC调节加热功率直径恒定。选取最小4×4mm,长度不小于50mm的籽晶引晶,维持60度放肩角,晶体生长直至坩埚直径的80%,通过调节转速和加热功率,直至晶体生长结束与熔体脱离,晶体生长到设定尺寸时,快速提拉氟化物晶体9脱离剩余熔体10,开始退火,退火温度为熔点的90%,退火时间为6小时,以20℃/小时降温至室温。获得大尺寸透明晶体。

实施例4

根据{xTmF3+ yTmF3(1-x-y)YF3}: BaF2=2:1,称取Ho:Tm:BaY2F8原料,其中根据掺杂激活离子浓度以及敏化离子浓度(Ho3++Tm3+)浓度,Ho3+浓度为0.2, Tm3+浓度为0.1;原料置于石墨加热的电阻加热炉铂金坩埚内。抽真空至3′10-5Pa,开始加热,加热到350℃恒温,充氩气95%和5%CF4通过充气管7至0.04MPa,继续升温至Re:BaY2F8原料完全熔化,恒温1小时。籽晶固定于籽晶杆,籽晶11固定在籽晶杆8上,转速控制在3rpm~5rpm,籽晶11下端与熔体10接触进行氟化物晶体生长,生长期间籽晶以3rpm~5rpm转速,0.1~0.3mm/小时提拉速率上升,使氟化物晶体9以60~80度角度扩肩直至坩埚直径的80%~90%,然后通过自动直径控制系统ADC通过调节加热功率保持所需直径;当氟化物晶体生长到设定尺寸时,快速提拉氟化物晶体9脱离剩余熔体10,开始退火,退火温度为熔点的90%,退火时间为5~6小时,以20℃/小时降温速率降温至室温,获得绿色大尺寸氟化物晶体。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号