首页> 中国专利> 网络遥操作机器人系统及时延克服方法

网络遥操作机器人系统及时延克服方法

摘要

本发明公开了一种网络遥操作机器人系统及时延克服方法,本系统由两个结构相同,功能对称的机械手通过网络通讯环节联系在一起。操作者对主机械手进行操作,使主机械手动作,主机械手通过力和角位移传感器以及通信控制环节将动作信号传递给从机械手,使其能够跟随主机械手同向运动。当从机械手受到环境影响时,能够再原路返回给主机械手,使主机械手也同样感受到环境的作用,再反馈给操作者。本发明采用了基于事件的建模方法和模糊预测控制算法,对模型失配有较好的鲁棒性,使系统克服网络时延所造成的影响。

著录项

  • 公开/公告号CN102825603A

    专利类型发明专利

  • 公开/公告日2012-12-19

    原文格式PDF

  • 申请/专利权人 江苏科技大学;

    申请/专利号CN201210332531.1

  • 发明设计人 曾庆军;陈静;王彪;章飞;陈伟;

    申请日2012-09-10

  • 分类号B25J9/16(20060101);

  • 代理机构32200 南京经纬专利商标代理有限公司;

  • 代理人楼高潮

  • 地址 212003 江苏省镇江市梦溪路2号

  • 入库时间 2023-12-18 07:41:11

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-08-28

    未缴年费专利权终止 IPC(主分类):B25J9/16 授权公告日:20150121 终止日期:20170910 申请日:20120910

    专利权的终止

  • 2015-01-21

    授权

    授权

  • 2013-02-06

    实质审查的生效 IPC(主分类):B25J9/16 申请日:20120910

    实质审查的生效

  • 2012-12-19

    公开

    公开

说明书

技术领域

本发明涉及一种机器人的控制系统及方法,尤其涉及一种基于网络的遥操 作机器人的控制系统以及时延克服方法,属于机器人技术领域。

背景技术

20世纪90代以来,计算机网络技术得到了飞速发展,借助计算机网络、 机械电子和传感器等方面的技术把机器人与网络相连,可以实现基于网络的遥 操作机器人。网络遥操作机器人可以利用网络作为媒介,连接位于网络两端的 操作者和机器人等设备,操作者利用从远端反馈回的声音、图像、位置、力等 状态信息,实时对远端机器人进行交互控制,完成生产、实验、探险等操作行 为。

然而,随着遥操作机器人被广泛应用到空间、深海、工业生产及人民生活 的各个领域,在操作者的安全性和工作效率提高的同时,其严重的不足也暴露 出来:遥操作系统固有的时延特性影响着系统的正常工作,时延较大或变化时, 将大大降低系统的性能,甚至造成不稳定。网络传输时延尤其是大时延和变时 延给遥操作机器人带来的影响,主要体现在降低系统的稳定性、透明性。

经过几十年的发展,国内外的学者专家们已经提出了不少解决时延问题的 方法,目前关于遥操作机器人系统的研究方法主要有三种,即预测控制、远程 规划和双边控制。

预测控制作为解决遥操作系统时延问题的有效方法,其主要思想是通过在 主机器人控制站建立从机器人和环境的虚拟模型,并用虚拟模型对从机械手受 力进行预测。当远程从机器人和环境的模型和虚拟模型的模型相同时,操作者 对虚拟模型的接触就等同于和真实环境的接触。但是预测控制也有自身的不足 之处,它一种基于模型的精确控制方法,需要知道从机械手和环境的精确模型, 而且控制算法相对复杂。为了解决预测控制算法复杂的问题,将预测控制与模 糊推理相结合,可以将模型模糊化,使控制方法更简单,更符合人们的控制思 想,再结合不依赖于时间基于事件的建模方法,可进一步克服时延的影响,提 高控制效果。

发明内容

本发明的目的在于提供一种网络遥操作机器人系统及时延克服方法,优化 网络遥操作系统,并解决网络遥操作机器人现存的时延问题。

本发明的目的通过以下技术方案予以实现:

一种网络遥操作机器人系统,由两个结构相同,功能对称的机械手通过网 络通讯环节联系在一起。包括主机械臂1、从机械臂2、主计算机3、从计算 机4、第一数据采集卡5、第二数据采集卡6、第一单片机7、第二单片机8。 所述主计算机3通过第一数据采集卡5采集主机械臂1的位置和力信号,所述 从计算机4通过第二数据采集卡6采集从机械臂2的位置和力信号,所述主计 算机3和从计算机4通过TCP/IP网络通讯环节将主从机械臂的位置和力信号 相互传递,所述主计算机3将控制信号由串口通信传递至第一单片机7,第一 单片机7输出PWM脉冲信号控制主机械臂1工作,所述从计算机4将控制信号 由串口通信传递至第二单片机8,第二单片机8输出PWM脉冲信号控制从机械 臂2工作。

一种网络遥操作机器人系统的时延克服方法,包括以下步骤:

1.建立针对网络时延的基于事件模型

以事件变量s代替现有系统中的参考变量—时间T,基于事件的控制中,选 取s为机械手走过的距离,设定每当s递增一段距离,产生一个事件,并把当前 的状态信息发送给路径管理器;

运动参考变量的产生方法:经过事件产生器得到反馈事件s,为了使参考 事件s跟踪上期望参考事件sd,采用如下算法产生期望的事件输入:

sd=s-k(dsddt-dsdt)

定义e=sd-s,可知s收敛于sd

设机器人的一般模型如下:

dxdt=f(x)+g(x)uxRn,uRmy=h(x)yRm

令所选的新参考变量s=S(x(t)),由可知基于事件模型的机器人系 统可表示如下:

dxdt=f(x(s))v(s)+g(x(s))v(s)uxRn,uRmy=h(x(s))yRm

其中,v(s)=dS(x(t))dt

由建立的基于事件的模型可知系统的模型参数;

2.模糊预测控制算法

结合所建立的基于事件模型进行模糊广义预测控制器的设计;

基于广义预测控制的模型预测和滚动优化:

设网络遥操作机器人系统的预测模型由受控自回归积分滑动平均模型,即 CARIMA方程描述:

A(z-1)y(k)=B(z-1)uGPC(k-1)+C(z-1)ξ(k)/Δ

其中A(z-1)、B(z-1)和C(z-1)分别是n、m和n阶的z-1的多项式,可令C(z-1)=1, y(k)为系统输出,uGPC(k-1)表示控制量,ξ(k)表示均值为零的白噪声序列,z-1为 后移算子,Δ=1-z-1为差分算子,若时滞大于零,则B(z-1)多项式开头的一项或 几项系统等于零。由于CARIMA模型能自然地把积分作用纳入控制律中,可以消 除系统的稳态误差;

考虑k时刻的优化性能指标,采用下式表示:

J=Σj=1N1[y(k+j)-yr(k+j)]2+Σj=1Nμλ[ΔuGPC(k+j-1)]2

式中,yr为已知的参考序列,λ是大于零的控制加权系数,N1是最大预测 时域,Nμ表示控制时域(Nμ<N1),即在Nμ步后控制量将不再发生变化;

为了预测超前j步的输出,引入丢番图方程

1=Ej(z-1)A(z-1)Δ+z-jFj(z-1)

Ej(z-1)Bj(z-1)=Gj(z-1)+z-jHj(z-1)

其中Ej(z-1)、Fj(z-1)、Gj(z-1)和Hj(z-1)分别是j-1、n、j-1和m-1阶的z-1的 多项式;

由上述公式可知,只要给定预测时域N1,控制时域Nμ和加权常数λ,就可 以求出控制量ΔuGPC(k),其向量形式如下所示:

uGPC(k)=u(k-1)+gT(yr-Fy)

ΔuGPC(k)=gT(yr-Fy)

式中,gT为(GTG+λI)-1GT的第一行;

具体算法步骤如下:

第一步:由基于事件的模型可知被控对象模型参数A(z-1)和B(z-1);

第二步:给定预测时域N1,控制时域Nμ和加权常数λ;

第三步:由丢番图方程求解多项式Ej,Fj,Gj和Hj

第四步:计算矩阵G及(GTG+λI)-1

第五步:求解出控制量uGPC(k)和ΔuGPC(k)。

本发明的目的还可以通过以下技术措施来进一步实现:

前述网络遥操作机器人系统的时延克服方法,还包括基于模糊推理的反馈 校正方法;

控制信号Δu(k)由下面两部分组成:

Δu(k)=ΔuGPC(k)+ΔuF(k)

其中uF(k)为模糊推理的得到对误差的补偿控制量;

设e(k)和ec(k)为系统k时刻的反馈偏差和偏差变化值,由于系统存在τ步时 延,则uF(k)由e(k-τ)和ec(k-τ)确定;

即:e(k-τ)=yr(k-τ)-ym(k-τ)

ec(k-τ)=e(k-τ)-e(k-τ)

其中,yr(k-τ)为对象输出反馈值,ym(k-τ)为对象模型输出值,则uF可由 e(k-τ)和ec(k-τ)来判断;

模糊补偿控制器的设计将采用如下的控制律:将e和ec的论域分别划分为5 个模糊集{NB,NS,ZE,PS,PB}和3个模糊集{N,Z,P},为了得到更准确的预测误差 补偿,设定偏差e采用高斯隶属度函数,偏差变化率ec采用三角形隶属度函数, 定义模糊规则如下:

Ri:If e is Am and ec is Bn then uF is Ck

其中,Am∈{NB,NS,ZE,PS,PB},Bn∈{N,Z,P},i=1,2,…,15,uF为补偿控制输 入;

控制规则如下所示:

在进行反模糊化时,为了得到更精确的控制量,采用面积重心法求得uF的 清晰值,即用如下的推理方法进行计算:

uF=Σi=115(wi·Ci)/Σi=115wi

wi=Am(e(k-τ))·Bn(ec(k-τ))/Σi=115(Am(e(k-τ))·Bn(ec(k-τ)))

考虑到uF变化过大可能会影响控制效果,则误差补偿控制量ΔuF(k)由下式 进行约束:

ΔuF(k)=λ(uF(k)-uF(k-1))

其中λ∈[0,1],为常数。

与现有技术相比,本发明的有益效果是:

1.本发明针对网络遥操作系统存在的时延问题,在建模方面采用了基于事 件的模型,规避时延问题的影响,使系统成为闭环的,实时控制系统,可以保 证系统的稳定性。

2.在建立基于事件模型的基础上,将预测控制与模糊推理相结合,对模型 失配有较好的鲁棒性,也可以更好地克服时延的影响。

附图说明

图1是本发明网络遥操作机器人系统结构图;

图2是网络遥操作机器人主从端控制结构图;

图3是LabVIEW主端软件流程图;

图4是LabVIEW从端软件流程图;

图5是LabVIEW前面板设计框图;

图6是基于事件的模型框图;

图7是模糊预测控制器的结构框图。

具体实施方式

下面结合附图和具体实施例对本发明作进一步说明。

如图1所示,网络遥操作机器人系统,由两个结构相同,功能对称的机械 手通过网络通讯环节联系在一起。

如图2所示,网络遥操作机器人系统,包括主机械臂1、从机械臂2、主计 算机3、从计算机4、第一数据采集卡5、第二数据采集卡6、第一单片机7、 第二单片机8。所述主计算机3通过第一数据采集卡5采集主机械臂1的位置 和力信号,所述从计算机4通过第二数据采集卡6采集从机械臂2的位置和力 信号,所述主计算机3和从计算机4通过TCP/IP网络通讯环节将主从机械臂 的位置和力信号相互传递,所述主计算机3将控制信号由串口通信传递至第一 单片机7,第一单片机7输出PWM脉冲信号控制主机械臂1工作,所述从计算 机4将控制信号由串口通信传递至第二单片机8,第二单片机8输出PWM脉冲 信号控制从机械臂2工作。

操作者操纵主机械臂动作,由此产生的位移信号通过角位置传感器由数据 采集卡采集,并通过TCP/IP网络通讯环节将位置信号传递到从手计算机,从计 算机通过一定的算法,将控制信号通过串口通信传递给单片机,单片机发送PWM 脉冲信号控制从机械臂电机的转动,使从机械臂能够跟随主机械臂运动。当从 机械臂遇到环境的作用时,力传感器就会感受到力信号,并由数据采集卡采集, 通过TCP/IP网络通讯环节发送给主计算机,主计算机通过一定的算法,将控制 信号通过串口通信传递给单片机,单片机再发送PWM脉冲信号控制主机械臂电 机的转动,使操作者感受到从机械臂所受到的力,对后面的动作进行调整。

计算机上的软件平台将通过LabVIEW软件构建,实现主从手位置跟踪实验, 并在计算机上实时显示实验的各种波形及数据。网络遥操作机器人的LabVIEW 软件平台主要包括前面板和程序框图的设计。程序框图将包括下面四个部分的 设计。

(1)数据采集:在网络遥操作机器人系统中,需要通过数据采集卡采集机 械臂的位置及力的模拟量数据。因此,在LabVIEW平台中建立一个简单的VI, 实现数据采集卡的模拟量读取。

(2)串口通信:在网络遥操作机器人系统中,单片机需要通过串口接收计 算机发送的指令,从而产生相应的PWM脉冲信号控制电机,驱动主从机械臂实 现位置跟踪和力反馈。

(3)网络通讯:在本实验系统中,主从计算机采用TCP/IP协议通过网络 接口互相传递主从机械臂的位置力等数据。从计算机根据主从机械臂位置差值 控制从手跟踪主手运动;主计算机根据主从机械臂力的差值反馈从手所受的力 作用。

(4)算法设计:网络遥操作机器人要求精确度高,定位准确,操作稳定, 作为经典控制方法的PID控制在网络时延等干扰因素下很难达到实际要求,所 以本发明提出了网络遥操作机器人系统LabVIEW实验平台的模糊预测控制方 案。在LabVIEW平台下,并没有提供模糊控制和预测控制的工具包,可是LabVIEW 具有脚本节点的功能,通过脚本节点用户可以执行外部文件,如MATLAB的m 文件。在LabVIEW软件程序框图的函数面板上可以导入MATLAB脚本节点写好的 控制算法文件。LabVIEW软件流程图如图3、4所示。

针对网络遥操作机器人的LabVIEW程序设计分成主机械臂端和从机械臂端 两个部分。从机械臂端配置好有关参数,主机械臂端在指定的端口进行侦听, 当从端发送TCP连接请求时,主端进行连接,此时系统开始进行网络通讯。主 端将位置信息通过数据采集发送给从端,从端读取数据并显示保存,同时通过 一定的算法,将数据通过串口通信发送给单片机,使从机械臂跟踪主机械臂的 运动。当遇到环境作用时,从端就会将力信息通过数据采集发送给主端,主端 读取数据并显示保存,将数据通过串口通信发送给单片机,使主端感受到从端 收到的力。在此过程中,主端可以通过发送本地停止请求结束连接。从端收到 主端的“停止”标志后,也会关闭本地的TCP连接。

如图5所示,LabVIEW前面板中将主要包括三部分。第一部分为网络连接 的地址、端口以及连接停止按钮等;第二部分为盘式主从手角度值和条式主从 手力值;第三部分为输出的主从手位置曲线或者主从手力值曲线,可以方便观 察系统的实时跟踪反馈情况。

网络遥操作机器人时延克服方法具体如下:

1.针对网络时延的基于事件模型建立

如图6所示,为了更好地解决网络时延问题,本发明采用了基于事件的建 模方式。

基于事件的模型实质就是选择一个与系统输出相关而与时间无关的变量作 为运动参考变量,系统的规划和设计都是基于这个新的事件变量s来进行的。s 代替以往系统中的参考变量—时间T,从而规避时延问题的影响,使系统成为 闭环的,实时控制系统,可以保证系统的稳定性。当系统运行在负载环境中或 者运行过程中遇到不确定、突发性行事件时,基于事件的模型也能够保持系统 的协调并具备处理这些突发性情况的能力,进一步保证了系统的稳定性。

由Lyapunov稳定性判据可知,如果原机器人系统在时间t为参考的情况下 是渐进稳定的,那么由逆定理可知,我们可以找到一个Lyapunov函数L(X(t))满 足:

1.L(X(t))正定

2.负定。

如果系统的运动以事件s作为参考变量,且s=П(y)是时间变量t的非减函 数,那么L(X(s))依然正定。

另外,dL(X(t))dt=dL(X(s))dt=dL(X(s))dsdsdt

只要所选事件s是时间t的非减或单调增函数,那么

因此是负定的。那么该系统关于事件参考变量s渐进稳定。

由此可见,基于事件的控制系统的可靠性在于事件模型不直接依赖于时间, 因而时延对控制系统的稳定将不会产生影响。也就是说,只要为系统找到合适 的事件s为参考变量,时延问题对控制系统的影响将大大降低。

基于事件的控制中,选取s为主机械手走过的距离,由于期望s是随时间递 增的函数,故选择的事件满足要求.设定每当s递增第一距离,如0.02m时, 就会产生一个事件,并把当前的状态信息发送给路径管理器。

运动参考变量的产生方法:经过事件产生器得到反馈事件s,为了使参考 事件s跟踪上期望参考事件sd,采用如下算法产生期望的事件输入:

sd=s-k(dsddt-dsdt)

定义e=sd-s,可知s收敛于sd

机器人的一般模型如下:

dxdt=f(x)+g(x)uxRn,uRmy=h(x)yRm

令所选的新参考变量s=S(x(t)),由可知基于事件模型的机器人系 统可表示如下:

dxdt=f(x(s))v(s)+g(x(s))v(s)uxRn,uRmy=h(x(s))yRm

其中,v(s)=dS(x(t))dt

由建立的基于事件的模型可知系统的模型参数。

2.模糊预测控制算法

如图7所示,本发明综合考虑了预测控制的输出预测和滚动优化的特点, 对模型失配造成的误差,直接采用模糊推理,进行反馈校正。这样,结合了预 测控制和模糊推理的优点,可以进一步解决时延问题对网络遥操作机器人的困 扰。

结合所建立的基于事件模型,下面进行模糊广义预测控制器的设计。

1)基于广义预测控制的模型预测和滚动优化

设网络遥操作机器人系统的预测模型由受控自回归积分滑动平均模型,即 CARIMA方程描述:

A(z-1)y(k)=B(z-1)uGPC(k-1)+C(z-1)ξ(k)/Δ

其中A(z-1)、B(z-1)和C(z-1)分别是n、m和n阶的z-1的多项式,可令C(z-1)=1, y(k)为系统输出,uGPC(k-1)表示控制量,ξ(k)表示均值为零的白噪声序列,z-1为 后移算子,Δ=1-z-1为差分算子,若时滞大于零,则B(z-1)多项式开头的一项或 几项系统等于零。由于CARIMA模型能自然地把积分作用纳入控制律中,可以消 除系统的稳态误差。

考虑k时刻的优化性能指标,采用下式表示:

J=Σj=1N1[y(k+j)-yr(k+j)]2+Σj=1Nμλ[ΔuGPC(k+j-1)]2

式中,yr为已知的参考序列,λ是大于零的控制加权系数,N1是最大预测 时域,Nμ表示控制时域(Nμ<N1),即在Nμ步后控制量将不再发生变化。

为了预测超前j步的输出,引入丢番图方程

1=Ej(z-1)A(z-1)Δ+z-jFj(z-1)

Ej(z-1)Bj(z-1)=Gj(z-1)+z-jHj(z-1)

其中Ej(z-1)、Fj(z-1)、Gj(z-1)和Hj(z-1)分别是j-1、n、j-1和m-1阶的z-1的 多项式。

由上述公式可知,只要给定预测时域N1,控制时域Nμ和加权常数λ,就可 以求出控制量ΔuGPC(k)。其向量形式如下所示:

uGPC(k)=u(k-1)+gT(yr-Fy)

ΔuGPC(k)=gT(yr-Fy)

式中,gT为(GTG+λI)-1GT的第一行。

具体算法步骤如下:

第一步:由基于事件的模型可知被控对象模型参数A(z-1)和B(z-1)。

第二步:给定预测时域N1,控制时域Nμ和加权常数λ

第三步:由丢番图方程求解多项式Ej,Fj,Gj和Hj

第四步:计算矩阵G及(GTG+λI)-1

第五步:求解出控制量uGPC(k)和ΔuGPC(k)。

2)基于模糊推理的反馈校正

在一般的广义预测控制中,预测控制的预测模型和滚动优化思想都得到了 体现,而反馈校正环节体现的较少。由于环境,噪音,网络延迟和干扰因素, 使得实际控制系统的数学模型和预测模型有较大的误差,为了解决这一问题, 本发明利用模糊补偿来修正预测模型的输出,它不仅能进一步克服模型失配的 影响,而且还提高了预测的准确性,即控制信号Δu(k)由下面两部分组成:

Δu(k)=ΔuGPC(k)+ΔuF(k)

其中uF(k)为模糊推理的得到对误差的补偿控制量。

设e(k)和ec(k)为系统k时刻的反馈偏差和偏差变化值,由于系统存在τ步时 延,则uF(k)由e(k-τ)和ec(k-τ)确定。

即:e(k-τ)=yr(k-τ)-ym(k-τ)

ec(k-τ)=e(k-τ)-e(k-τ-1)

其中,yr(k-τ)为对象输出反馈值,ym(k-τ)为对象模型输出值,则uF可由 e(k-τ)和ec(k-τ)来判断。

模糊补偿控制器的设计将采用如下的控制律:将e和ec的论域分别划分为5 个模糊集{NB,NS,ZE,PS,PB}和3个模糊集{N,Z,P},为了得到更准确的预测误差 补偿,设定偏差e采用高斯隶属度函数,偏差变化率ec采用三角形隶属度函数, 定义模糊规则如下:

Ri:If e is Am and ec is Bn then uF is Ck

其中,Am∈{NB,NS,ZE,PS,PB},Bn∈{N,Z,P},i=1,2,…,15,uF为补偿控制输 入。

控制规则如下所示:

在进行反模糊化时,为了得到更精确的控制量,将采用面积重心法求得uF的 清晰值,即用如下的推理方法进行计算:

uF=Σi=115(wi·Ci)/Σi=115wi

其中,wi=Am(e(k-τ))·Bn(ec(k-τ))/Σi=115(Am(e(k-τ))·Bn(ec(k-τ)))

此外,考虑到防止因uF变化过大影响控制效果,误差补偿控制量ΔuF(k)由 下式进行约束:

ΔuF(k)=λ(uF(k)-uF(k-1))

其中λ∈[0,1],为常数。

除上述实施例外,本发明还可以有其他实施方式,凡采用等同替换或等效 变换形成的技术方案,均落在本发明要求的保护范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号